

Revisiting Keccak and Dilithium Implementations on ARMv7-M

in TCHES 2024, Issue 2

Authors: Junhao Huang, Alexandre Adomnicăi, Jipeng Zhang, Wangchen Dai, Yao Liu, Ray C. C. Cheung, Çetin Kaya Koç, Donglong Chen*

September 5, 2024

Introduction

1.1 Background

1.2 Target Platforms

1.1.1 Quantum Computers

Quantum computers are being developed rapidly. **Shor's algorithm** in quantum computers would break the existing **public-key cryptosystem** (**PKC**) in **polynomial time**.

This prompted the cryptographic community to search for **suitable alternatives** to traditional PKC.

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the **post-quantum cryptographic algorithms (PQC).**

Round	Round 3		Round 4				
Types	KEM	DSA	KEM	DSA			
Schemes	Kyber	Dilithium	Kyber (ML-KEM)	Dilithium (ML-DSA)			
	Saber	Falcon	-	Falcon			
	NTRU	Rainbow	-	Sphincs+ (SLH-DSA)			
	Classic McEliece	-	-	-			

Table 1: Round 3 and Round 4 NIST PQC finalists

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of security and efficiency:

- Round 3: 5 out of 7 candidates belong to LBC;
- **Round 4:** 3 out of 4 finalists belong to LBC.

1.1.3 LBC Core Operations

LBC core operations

- Symmetric cryptographic primitives: SHA-3;
 Polynomial multiplication: NTT/INTT, pointwise multiplication;
- **1. Symmetric cryptographic primitives SHA-3** accounts for over **70% running-time** according to pqm4. The state-of-the-art Keccak implementations on ARMv7-M is based on the **XKCP library [BDH+]** by Keccak team. The most related work [BK22] studied Keccak optimizations on AArch64. However, these techniques have not been applied to ARMv7-M yet.
- 2. (Inverse) Number Theoretic Transform (NTT) : It is a generalization of the classic discrete Fourier transform (DFT) in finite fields. In brief, NTT can reduce the time complexity of multiplying two *n*-degree polynomial a = ∑ a_ixⁱ, b = ∑ b_ixⁱ from O(n²) down to O(nlogn). The polynomial multiplication with NTT is performed as: c=a*b=INTT(NTT(a) ∩NTT(b)) where o is cheap pointwise multiplication.

This work will revisit both **Keccak and polynomial multiplication of Dilithium** for further optimization potential.

1.2 Target Platforms: ARMv7-M

□ ARM Cortex-M4: Relative high power, resource and memory IoT platform

- NIST's reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4 repository: <u>https://github.com/mupq/pqm4</u>);
- > 1MB flash, 192KB RAM;
- ▶ 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;
- Inline barrel shifter operation: e.g., add rd, rn, rm, asr #16, which can merge the addition and shifting operations in 1 instruction.
- SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction for two packed 16-bit vectors;
- 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};
- Relative expensive load/store instructions: ldr, ldrd, vldm.

1.2 Target Platforms: ARMv7-M

ARM Cortex-M3: Low resource IoT platform

- > 512KB flash, 96KB RAM;
- > 14 32-bit usable general-purpose registers, **no** floating-point registers;
- Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the addition and shifting operations in 1 instruction.
- Relative expensive load/store instructions: ldr, ldrd.
- > No SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).
- Non-constant time full multiplication instructions: umull, smull, umlal and small; So the constant-time 32-bit modular multiplication is very expensive on Cortex-M3, which also leads to the slow 32-bit NTT.

Keccak Optimizations on ARMv7-M

- 2.1 Keccak
- 2.2 Existing Optimizations on ARMv7-M
- 2.3 Keccak Optimizations on ARMv7-M

2.1 Keccak

□ Keccak permutation

- ≻ Keccak- $p[b, n_r]$, where b = 1600, $n_r = 24$ in NIST standards.
- Each state A is represented as an array of 5×5 lanes, each lane is w = 64 bits. A[x, y] refers to the lane at position (x, y) and A[x, y, z] refers to the z-th bit of the lane.
- > Keccak-*p* is an iterated permutation where each round consists of five consecutive operations θ , ρ , π , χ and ι , where χ is the only non-linear operation.

```
# b refers to the permutation width while nr refers to the number of rounds
  keccak-p[b,nr](A):
2
    A = roundperm(A, RC[i])
                                                                   for i in 0..nr-1
    return A
a # r[x,y] refer to rotation offsets while RC refers to the round constant
  roundperm(A,RC):
7
  # theta step
8
  C[x] = A[x,0] \text{ xor } A[x,1] \text{ xor } A[x,2] \text{ xor } A[x,3] \text{ xor } A[x,4] \text{ for x in } 0..4
9
10 D[x] = C[x-1] \text{ xor rot}(C[x+1], 1)
                                                                     for x in 0..4
                                                         for (x,y) in (0..4,0..4)
  A[x,y] = A[x,y] \text{ xor } D[x]
11
12 # rho and pi step
   B[y, 2*x+3*y] = rot(A[x,y], r[x,y]) for (x,y) in (0..4,0..4)
13
   # chi step
14
A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]) for (x,y) in (0..4,0..4)
    # iota step
16
    A[0,0] = A[0,0] \text{ xor RC}
17
    return A
18
```

Listing 1: Pseudo-code of the Keccak-p cryptographic permutation.

2.2 Existing Optimizations on ARMv7-M

□ Bit interleaving

- ➢ To store 1600-bit Keccak state on 32-bit ARMv7-M, we need 50 32-bit registers, which is not enough on ARMv7-M and requires expensive memory accesses to load the state.
- Bit interleaving technique consists of storing bits at odd positions in one 32-bit register, and bits at even positions in another. In this way, the 64-bit rotations can be easily handled by two separate 32-bit rotations.

□ In-place processing

- The in-place processing means that it is possible to store all processed data back into the same memory location it was loaded from.
- The Keccak designers proposed a method that will return to its initial memory location after 4 rounds.

Performance analysis

	XOR	AND/BIC	NOT	Rotations
32-bit platforms	152 XORs	50 ANDs	50 NOTs	58 ROTs
32-bit ARMv7-M	152 EORs	50 BICs	-	48 RORs

These instructions theoretically takes $250 \times 24 = 6000$ cycles on ARMv7-M. However, the state-of-the-art Keccak- $p[1600, \cdot]$ from XKCP requires 12969 cycles, meaning that around 54% of cycles are spent in memory accesses.

2.3 Keccak Optimizations on ARMv7-M

Pipelining memory access

- The original xor5 macro (listing 2) from XKCP [CDH+] suffers memory access pipeline stalls. We manage to relax the register pressure and group 5 ldr instructions together (listing 3), which saves 3 cycles per macro call.
- We also reordered some other instructions throughout the code. Notably, we moved str instructions after multiple ldr instructions as much as possible.

.macro xor5	result, b, g, k, m, s				
ldr	\result, [r0, #\b]				
ldr	r1, [r0, #\g]				
eors	\result, \result, r1				
ldr	r1, [r0, #\k]				
eors	\result, \result, r1				
ldr	r1, [r0, #\m]				
eors	\result, \result, r1				
ldr	r1, [r0, #\s]				
eors	\result, \result, r1				
.endm					

Listing 2: Original ARMv7-M assembly code from [BDH⁺] to compute half a parity lane. Loads from memory are not fully grouped and thus not optimally pipelined on M3 and M4 processors.

.macro xor5	result, b, g, k, m, s
ldr	\result, [r0, #\b]
ldr	r1, [r0, #\g]
ldr	r5, [r0, #\k]
ldr	r11, [r0, #\m]
ldr	r12, [r0, #\s]
eors	\result, \result, r1
eors	\result, \result, r5
eors	\result, \result, r11
eors	\result, \result, r12
.endm	

Listing 3: ARMv7-M assembly code after optimization to compute half a parity lane. Loads from memory are now fully grouped and thus optimally pipelined on M3 and M4 processors.

2.3 Keccak Optimizations on ARMv7-M

Lazy rotations

- > The original XKCP implementation makes use of explicit rotations for the ρ step through ror instructions, which requires 47 such instructions per round.
- Recently, Becker and Kannwischer [BK22] proposed that one can omit these explicit rotations using lazy rotations and defer the explicit rotations until the θ step in the next round (i.e. rotating the second operands using the inline barrel shifter) on AArch64.
- Inspired by [BK22], we first utilize the inline barrel shifter instruction on ARMv7-M to merge the xor and ror instructions, which also helps to reduce some cycles.
- We proposed **two variants of Keccak implementation** considering the code size effect.
 - One has better performance but requiring larger code size: lazy rotations for all rounds.
 - One has smaller code size and an acceptable performance: lazy rotations for three-quarters of the rounds.

03Dilithium Optimizations on ARMv7-M

3.1 CRYSTAL-Dilithium

3.2 Efficient Multi-moduli NTT for ct_0

3.3 Efficient 16-bit for cs_i and ct_i

3.1.1 CRYSTAL-Dilithium

CRYSTAL-Dilithium

- > One out of three DSAs standardized by NIST (FIPS-204).
- ➤ Its hardness is based on MLWE and MSIS problems.

➢ Parameters: n = 256, $q = 8380417 < 2^{23}$, $Z_{8380417}[X] / (X^{256} + 1)$.

Algorithm 2 Dilithium signature generation (sign) [DKL+18]

Input: Secret key sk and message MOutput: $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$ 1: $\mathbf{A} \in R_q^{k \times \ell} := \text{ExpandA}(\rho) \ \triangleright \mathbf{A}$ is generated and stored in NTT representation as $\hat{\mathbf{A}}$ 2: $\mu \in \{0, 1\}^{512} := H(tr || M)$ 3: $\kappa := 0, (\mathbf{z}, \mathbf{h}) := \bot$ 4: $\rho' \in \{0,1\}^{512} := H(K \| \mu)$ (or $\rho' \leftarrow \{0,1\}^{512}$ for randomized signing) 5: while $(\mathbf{z}, \mathbf{h}) = \perp$ do \triangleright Pre-compute $\hat{\mathbf{s}}_1 := \text{NTT}(\mathbf{s}_1), \hat{\mathbf{s}}_2 := \text{NTT}(\mathbf{s}_2)$, and $\hat{\mathbf{t}}_0 := \operatorname{NTT}(\mathbf{t}_0)$ 6: $\mathbf{y} \in \tilde{S}_{\gamma_1}^{\ell} := \text{ExpandMask}(\rho', \kappa)$ 7: $\mathbf{w} := \mathbf{A}\mathbf{y}$ $\triangleright \mathbf{w} := \text{INTT}(\hat{\mathbf{A}} \cdot \text{NTT}(\mathbf{v}))$ 8: $\mathbf{w}_1 := \text{HighBits}_a(\mathbf{w}, 2\gamma_2)$ 9: $\tilde{c} \in \{0, 1\}^{256} := H(\mu \| \mathbf{w}_1)$ 10: $c \in B_{\tau} :=$ SampleinBall (\tilde{c}) \triangleright Store c in NTT representation as $\hat{c} = \text{NTT}(c)$ \triangleright Compute $c\mathbf{s}_1$ as INTT $(\hat{c} \cdot \hat{\mathbf{s}}_1)$ 11: $z := y + cs_1$ $\mathbf{r}_0 := \text{LowBits}_a \left(\mathbf{w} - c \mathbf{s}_2, 2\gamma_2 \right)$ \triangleright Compute $c\mathbf{s}_2$ as INTT $(\hat{c} \cdot \hat{\mathbf{s}}_2)$ 12:If $\|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta$ or $\|\mathbf{r}_0\|_{\infty} \geq \gamma_2 - \beta$, then $(\mathbf{z}, \mathbf{h}) := \bot$ 13:14: else $\mathbf{h} := \text{MakeHint}_{a} \left(-c\mathbf{t}_{0}, \mathbf{w} - c\mathbf{s}_{2} + c\mathbf{t}_{0}, 2\gamma_{2} \right) \mathrel{\triangleright} \text{Compute } c\mathbf{t}_{0} \text{ as INTT} \left(\hat{c} \cdot \hat{\mathbf{t}}_{0} \right)$ 15: if $\|c\mathbf{t}_0\|_{\infty} \geq \gamma_2$ or the # of 1's in \mathbf{h} is greater than ω , then $(\mathbf{z}, \mathbf{h}) := \bot$ 16: $\kappa := \kappa + \ell$ 17: 18: return $\sigma = (\tilde{c}, \mathbf{z}, \mathbf{h})$

3.1.2 Polynomial multiplication of Dilithium

□ Small polynomial multiplications: *cs*_i, *ct*_i

- > In Dilithium signature generation and verification, there exists a small polynomial c with at most τ nonzero coefficients (±1) and the rest of coefficients are 0.
- > The coefficient range of s_i is $[-\eta, \eta]$, then the coefficients of the product cs_i are smaller than $\beta = \tau \cdot \eta$ (smaller than 16-bit).
- > The coefficient range of t_i is smaller than 2^{12} or 2^{10} , then the coefficients of the product ct_i are smaller than $\beta' = \tau \cdot 2^{12}$ or $\beta' = \tau \cdot 2^{10}$ (bigger than 16-bit).
- According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be treated as multiplications over Z_q, [X]/(Xⁿ + 1) with a large prime modulus q' > 2β or q' > 2β'. In sum, we can use 16-bit NTT for cs_i and 32-bit NTT for ct_i.

NIST security level	2	3	5	
$q \; [modulus]$	8380417	8380417	8380417	
n [the order of polynomial]	256	256	256	
d [drop bits from t]	13	13	13	
$\tau \ [\# \text{ of } \pm 1\text{'s in } c]$	39	49	60	
γ_1 [y coefficient range]	2^{17}	2^{19}	2^{19}	
γ_2 [low-order rounding range]	(q-1)/88	(q-1)/32	(q-1)/32	
(k, l) [dimensions of A]	(4,4)	(6,5)	(8,7)	
η [secret key range]	2	4	2	
$\beta = \tau \cdot \eta \ [c\mathbf{s}_i \text{ coefficient range}]$	78	196	120	
\mathbf{t}_0 coefficient range	2^{12}	2^{12}	2^{12}	
\mathbf{t}_1 coefficient range	2^{10}	2^{10}	2^{10}	

able 1: Dilithium parameters	$[DKL^{+}18]$
------------------------------	---------------

3.1.3 16-bit NTT vs 32-bit NTT on Cortex-M3

□ 16-bit NTT vs 32-bit NTT on Cortex-M3

- Cortex-M3 does not have constant-time full multiplication, which may lead to insecure 32-bit modular multiplication implementation (side-channel attack).
- > The constant-time 32-bit modular multiplication in [GKS20] takes 6-8 instructions.
- The constant-time 32-bit CT butterfly takes in [GKS20] 19 instructions, compared to 5 instructions for 16-bit CT butterfly;
- The 16-bit NTT with Plantard arithmetic in [HZZ+23] is at least 2~3 × faster than 32-bit NTT in [GKS20] on Cortex-M3.

Listing 5 Schoolbook SMULL (SBSMULL)	Listing 6 Schoolbook SMLAL (SBSMLAL)
; Input: a = a0 + a1*2^16	1 ; Input: a = a0 + a1*2^16
; $b = b0 + b1 * 2^{-16}$	$_2$; $b = b0 + b1*2^{-16}$
; Output: $c = a*b = c0 + c1*2^{32}$	$_3$; $c = c0 + c1*2^{32}$
mul c0, a0, b0	a; Output: $c = c + a*b$
mul c1, a1, b1	$_{5}$; = $c0 + c1*2^{32}$
mul tmp, a1, b0	6 mul tmp, a0, b0
mla tmp, a0, b1, tmp	7 adds c0, c0, tmp
adds c0, c0, tmp, 1sl #16	s mul tmp, a1, b1
adc c1, c1, tmp, asr #16	9 adc c1, c1, tmp
	10 mul tmp, a1, b0
	11 mla tmp, a0, b1, tmp
	12 adds c0, c0, tmp, 1s1 #16
	13 adc c1, c1, tmp, asr #16

Constant-time 32-bit multiplication implementation on Cortex-M3 [GKS20]

3.2 The Proposed *cs*_{*i*}, *ct*_{*i*} **Implementations**

D NTT over 769 for cs_i

- > The coefficient range of s_i is $[-\eta, \eta]$, then the coefficients of the product cs_i are smaller than $\beta = \tau \cdot \eta = 78$, 196 and 120 for three security levels. [AHKS22] used FNT over 257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.
- On Cortex-M4: We reuse FNT over 257 for Dilithium2 and Dilithium5, and optimize NTT over 769 with Plantard arithmetic.
- On Cortex-M3: We reuse NTT over 769 with Plantard arithmetic for all Dilithium variants, because we can then combine it with multi-moduli NTT.

Multi-moduli NTT for *ct*_{*i*}

- ➤ The coefficient range of t_i is 2¹² or 2¹⁰, then the coefficients of the product ct_i are smaller than β' = τ · 2¹² = 245760, q' > 2β' = 491520. We choose a composite modulus q' = 769 × 3329 = 2560001 and perform multiplications over Z_{q'}[X]/(Xⁿ + 1).
- > On Cortex-M4: The 16-bit NTT and 32-bit NTT has not much differences. So we cannot use multi-moduli NTT for ct_i on Cortex-M4.
- On Cortex-M3: We optimize ct_i with the multi-moduli NTT over the q' = 769 × 3329 for all three Dilithium variants and separately optimize the 16-bit NTT over 769 and 3329 with Plantard arithmetic.

3.2.1 Efficient Multi-moduli NTT for *ct*_{*i*}

□ Multi-moduli NTTs for *ct_i* on Cortex-M3

 $\mathbb{Z}_{q_0q_1} \cong \mathbb{Z}_{q_0} \times \mathbb{Z}_{q_1};$ $\mathbb{Z}_{q_0}[X]/(X^{256}+1) \cong \mathbb{Z}_{q_0}[X]/(X^2-\zeta_0^j), j = 1, 3, 5, \dots, 255;$ $\mathbb{Z}_{q_1}[X]/(X^{256}+1) \cong \mathbb{Z}_{q_1}[X]/(X^2-\zeta_1^j), j = 1, 3, 5, \dots, 255;$

3.2.1 Efficient Multi-moduli NTT for *ct^{<i>i*}

□ Multi-moduli NTTs for *ct_i* on Cortex-M3

Algorithm 4 Multi-modu	li NTT for computin	g 32-bit NTT on Cortex-M3				
Input: Declare arrays: in	t32_t c_32[256],t	_32[256],tmp_32[256],res_32[256]				
	(int16_t *cl_16=	(int16_t*)c_32;				
	int16_t *ch_16=	int16_t *ch_16=(int16_t*)&c_32[128];				
T (D)	int16_t *t1_16=	(int16_t*)t_32;				
Input: Declare pointers:	int16_t *th_16=	(int16 t*)&t 32[128];				
	int16_t *tmpl_1	6=(int16_t*)tmp_32;				
	int16_t *tmph_1	6=(int16_t*)&tmp_32[128];				
1: cl_16[256] $\leftarrow c, ch_16$	$5[256] \leftarrow c \qquad \triangleright \operatorname{Pi}$	re-store c in the bottom and top halves of				
c_32 as 16-bit arrays						
2: $t1_16[256] \leftarrow t, th_16$	$[256] \leftarrow t \qquad \triangleright \operatorname{Pr}$	re-store t in the bottom and top halves of				
t_32 as 16-bit arrays						
3: $cl_{16}[256] = NTT_{q_0}($	cl_16)	$\triangleright \hat{c}_0 = \operatorname{NTT}_{q_0}(c)$				
4: $ch_{16}[256] = NTT_{g_1}($	ch_16)	$\triangleright \hat{c}_1 = \operatorname{NTT}_{q_1}(c)$				
5: $tl_16[256] = NTT_{q_0}($	tl_16)	$\triangleright \hat{t}_0 = \mathrm{NTT}_{q_0}(t)$				
6: th 16[256] = NTT_{a}	th 16)	$\triangleright \hat{t}_1 = \mathrm{NTT}_{a_1}(t)$				
7: tmpl_16[256] = basen	$nul_{a_0}(cl_{16}, tl_{16})$	$\triangleright \hat{c}_0 \cdot \hat{t}_0 = \text{basemul}_{a_0}(\hat{c}_0, \hat{t}_0)$				
8: tmph_16[256] = basen	$ul_{q_1}(ch_{16}, th_{16})$	$\triangleright \hat{c}_1 \cdot \hat{t}_1 = \text{basemul}_{q_1}(\hat{c}_1, \hat{t}_1)$				
9: tmpl 16[256] = INTT _{ac} (tmpl 16) \triangleright INTT _{ac} (
10: tmph_16[256] = INTT	$a_1(\text{tmph}_{16})$	\triangleright INTT _{q1} $(\hat{c}_1 \cdot \hat{t}_1)$				
11: res_32[256] = CRT(t	mpl_16, tmph_16)	$\triangleright \operatorname{CRT}(\operatorname{INTT}_{q_0}(\hat{c}_0 \cdot \hat{t}_0), \operatorname{INTT}_{q_1}(\hat{c}_1 \cdot \hat{t}_1))$				
12: return res_32						

3.2.2 Efficient 16-bit NTT for *cs^{<i>i*} **and** *ct^{<i>i*} **i**

Efficient 16-bit NTT with Plantard arithmetic on Cortex-M3 [HZZ+23]

- The 16×32-bit multiplication is implemented with **mul** instruction, and the effective result lies in the **higher 16-bit of** *r*. We can merge the **addition and shiftting operation** using the inline barrel shifter operation as in Step 3 of Algorithm 4.
- > The Plantard implementation is **1-multiplication faster than the Montgomery's.**
- > No modular reduction in INTT over 769 and 3329 at all.

Algorithm 3 Plantard multiplication with enlarged input range Input: Two signed integers a, b such that $ab \in [q2^{l} - q2^{l+\alpha}, 2^{2l} - q2^{l+\alpha}), q < 2^{l-\alpha-1}, q' = q^{-1} \mod^{\pm} 2^{2l}$ Output: $r = ab(-2^{-2l}) \mod^{\pm} q$ where $r \in [-\frac{q+1}{2}, \frac{q}{2})$ 1: $r = \left[\left([[abq']_{2l}]^{l} + 2^{\alpha}\right)q\right]^{l}$ 2: return r

Algorithm 5 Efficient Plantard multiplication by a constant for 16-bit modulus q_i on Cortex-M3 [HZZ⁺23]

Input: Two signed integers a, b such that $a \in (q_i 2^{16} - q_i 2^{16+\alpha_i}, 2^{32} - q_i 2^{16+\alpha_i})$, a precomputed 32-bit integer bq'_i where b is a constant and $q'_i = q_i^{-1} \mod^{\pm} 2^{32}$ Output: $r = ab(-2^{-32}) \mod^{\pm} q_i$ 1: $bq'_i \leftarrow bq_i^{-1} \mod 2^{32}$ \triangleright precomputed 2: mul r, a, bq'_i 3: add $r, 2^{\alpha_i}, r, \operatorname{asr}\#16$ 4: mul r, r, q_i 5: asr r, r, #166: return r

3.2.2 Efficient 16-bit NTT for *cs^{<i>i*} **and** *ct^{<i>i*} **i**

The explicit CRT implementation with Plantard arithmetic

- ➤ The constant $m_1 = q_0^{-1} \mod^{\pm} q_1$ in CRT computation can be precomputed as $(m'_1 = m_1 \cdot (-2^{32} \mod q_1) \cdot (q_1^{-1} \mod 2^{32}) \mod 2^{32})$ and speeded up with the efficient Plantard multiplication by a constant.
- > The implementation is **1-multiplication faster than the Montgomery's.**

Algorithm 6 The explicit CRT with Plantard arithmetic on Cortex-M3

Input: $u_0 = u \mod q_0, u_1 = u \mod q_1, m_1 = q_0^{-1} \mod^{\pm} q_1, m'_1 = m_1 \cdot (-2^{32} \mod q_1) \cdot (q_1^{-1} \mod 2^{32}) \mod 2^{32}, q_1 2^{\alpha_1} < 2^{15}$ Output: $u = u_0 + ((u_1 - u_0)m_1 \mod^{\pm} q_1)q_0$ 1: sub t, u_1, u_0 2: mul t, t, m'_1 3: add $t, 2^{\alpha_1}, t, \operatorname{asr}\#16$ 4: mul t, t, q_1 5: asr t, t, #16 $\triangleright t \leftarrow (u_1 - u_0)m_1 \mod^{\pm} q_1$ 6: mla u, t, q_0, u_0 $\triangleright u \leftarrow u_0 + tq_0$ 7: return u

Results and Conclusions

64

- **4.1 Results and Comparisons**
- **4.2 Conclusions**
- **4.3 References**

4.1 Results and Comparisons

General Keccak results

- Setup: Cortex-M3: ATSAM3X8E; Cortex-M4: STM32F407VG.
- The pipelining memory access optimization results in 17.13% and 12.84% speedups on Cortex-M3 and M4, respectively.
- ➢ When combined with the lazy rotation technique, we achieve up to 24.78% and 21.4% performance boosts on Cortex-M3 and M4, respectively.

Rof	Implementation characteristics [*]		Speed (clock cycles)		Code size	RAM
iter.	ldr/str	lazy ror	M3	M4	(bytes)	(bytes)
XKCP	mostly grouped	×	13015	11725	5576	264
	grouped	×	10785	10 219	5772	264
This work	grouped	✓ (3/4)	9 981	9415	<u>6 556</u>	264
	grouped	✓ (4/4)	9789	9218	<mark>9</mark> 536	264

Table 2: Keccak-p[1600, 24] benchmark on Cortex-M3 and I	M4.
--	-----

*All listed implementations take advantage of the in-place processing and bit-interleaving techniques.

NTT results on Cortex-M3

- Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on Cortex-M3 are 4.22×, 4.29×, and 2.14× faster than the constant-time 32-bit NTT, INTT, and pointwise multiplication in [GKS20], respectively. Compared to the 32-bit variable-time NTT, INTT, and pointwise multiplication, the speed ups are 2.48×, 2.46×, and 1.24×, respectively.
- The proposed multi-moduli NTT, INTT and pointwise multiplication implementations yield 52.76% ~ 54.76% performance improvements compared to the constant-time 32-bit NTT in [GKS20]. And over 19.47% and 19.07% speed-ups compared with the variable-time 32-bit NTT and INTT in [GKS20].

Platform	Prime	Ref.	NTT	INTT	Pointwise	CRT
M3	8380417	[GKS20] constant-time	33077	36661	8 528	×
	8380417	[GKS20] variable-time	19405	21051	4944	×
	3329×7681	$[ACC^+22]$	16770	19056	11927	4637
	769	This work	7830	8 543	3 989	×
	769×3329	This work	15626	$\frac{17037}{}$	8061	3735

Dilithium results on Cortex-M3

Platform	Operation _	Dilithium2		Dilithium3		Dilithium5	
		[GKS20]	This work	[GKS20]	This work	[GKS20]	This work
M3	$c\mathbf{s}_1$	346k	106k	424k	128k	580k	172k
	cs_2	346k	106k	502k	150k	658k	194k
	ct_0	269k	195k	328k	284k	446k	372k
	$c\mathbf{t}_1$	213k	195k	311k	284k	409k	372k

Table 5: Performance of Dilithium on Cortex-M3. Averaged over 1000 executions.

Operation	Dilithium2		Dilit	hium3	Dilithium5		
	[GKS20]	This work	[GKS20]	This work	[GKS20]	This work	
keygen	2059k	1739k	3594k	$\frac{3011}{k}$	×	5034k	
sign	7139k	5582k	11916k	9087k	×	20193k	
verify	1949k	1648k	3283k	2755k	×	4694k	

U Kyber and Dilithium hash profiling on Cortex-M4

Table 6: Performance and hash profiling of Kyber and Dilithium on the Cortex-M4 using the pqm4 framework. Averaged over 1000 executions.

Schomo	Koccak Impl	\mathbf{keygen}		sign/encaps		verify/decaps	
Scheme	Receat Impl.	speed	hashing	speed	hashing	speed	hashing
Dilithium2	XKCP	1595k	83.47%	4052k	64.53%	1576k	80.47%
	This work	1357k	80.57%	3487k	60.02%	1350k	77.2%
Dilithium3	XKCP	2828k	85.54%	6523k	62.95%	2702k	82.62%
	This work	2394k	82.92%	5574k	58.97%	2302k	79.61%
Dilithium5	XKCP	4817k	86.6%	8534k	68.08%	4714k	84.69%
	This work	4069k	84.14%	7730k	63.05%	3998k	81.95%
Kyber512	XKCP	432k	80.12%	527k	82.86%	472k	73.76%
	This work	369k	76.75%	448k	79.85%	409k	69.74%
Kyber768	XKCP	704k	79.04%	860k	82.38%	778k	74.75%
3	This work	604k	75.59%	732k	79.32%	674k	70.84%
Kyber1024	XKCP	1122k	79.58%	1314k	82.46%	1208k	76.07%
	This work	962k	76.18%	1119k	79.41%	1043k	72.29%

4.2 Conclusions

Optimized Keccak and Dilithium on ARMv7-M

- We significantly improved Keccak's efficiency using two optimized techniques on ARMv7-M.
- We explored efficient multi-moduli NTT and small NTT implementation with Plantard arithmetic for Dilithium on Coretx-M3.
- Open-source (<u>https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli</u>) and merge into pqm4 (<u>PR#254</u> and <u>PR#338</u>).

4.3 References

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. XKCP: eXtended Keccak Code Package.https://github.com/XKCP/XKCP. commit 7fa59c0. [BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid Scalar/Vector Im-plementations of Keccak and SPHINCS+ on AArch64. In Takanori Isobeand Santanu Sarkar, editors, Progress in Cryptology – INDOCRYPT 2022, pages 272–293, Cham, 2022. Springer International Publishing.https://eprint.iacr.org/2022/1243.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, GregorSeiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4 and AVX2.IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[HZZ+23] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, RayC. C. Cheung, Çetin Kaya Koç, and Donglong Chen. Yet another Improvementof Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices. IEEE Transactions on Information Forensics and Security, 2024.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and AmberSprenkels. Faster Kyber and Dilithium on the Cortex-M4. In Giuseppe Atenieseand Daniele Venturi, editors,Applied Cryptography and Network Security -20th International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022,Proceedings, volume 13269 ofLecture Notes in Computer Science, pages 853–871.Springer, 2022.

[GKS20]Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.Compact Dilithium Implementations on Cortex-M3 and Cortex-M4.IACRTrans. Cryptogr. Hardw. Embed. Syst., 2021(1):1–24, Dec. 2020

Thanks for listening!

