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Kyber and NTTRU

CRYSTALS-Kyber

• One of the third-round KEM finalists (The final KEM scheme to
be standardized).

• Module-LWE problem (A,b = AT s + e).
• The IND-CCA secure KEM protocols are obtained from the

IND-CPA secure PKE protocols using the Fujisaki-Okamoto
transform.

• Parameters:

Schemes n k q η1 η2 (du, dv ) δ

Kyber512 256 2 3329 3 2 (10, 4) 2−139

Kyber768 256 3 3329 2 2 (10, 4) 2−164

Kyber1024 256 4 3329 2 2 (11, 5) 2−174
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Kyber and NTTRU

NTRU and NTTRU

NTRU:
• One of the third-round KEM finalists.
• The polynomial arithmetic operates in three polynomial rings
Z3[x ]/Φn,Zq[x ]/Φn, and Zq[x ]/ (Φ1 · Φn) with Φ1 = (x − 1)
and Φn =

(
xn−1 + xn−2 + · · ·+ 1

)
.

NTTRU:
• An NTT-friendly variant of NTRU KEM scheme proposed in

TCHES2019 [LS19].
• The KeyGen, Encaps and Decaps are 30×, 5×, and 8× faster

than the respective procedures in the NTRU schemes.
• Parameters: q = 7681, n = 768.
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NTT and Modular Arithmetic

Number Theoretic Transform (NTT)

• Kyber and NTTRU use 16-bit NTT for polynomial multiplication.
Kyber: Z3329[X ]/(X 256 + 1), NTTRU: Z7681[X ]/(X 768 − X 384 + 1).

• The polynomial ring Zq[X ]/f (X ) implemented with NTT factors
the polynomial f (X ) as

f (X ) =
n−1∏
i=0

fi(X )(mod q),

where fi(X ) are small degree polynomials like (X 2 − r) and (X 3 ± r)
in Kyber and NTTRU, respectively.

• For NTTRU, the polynomial f (X ) = X 768 − X 384 + 1 is initially
split into (X 384 + 684)(X 384 − 685), then all the way down to
irreducible polynomials X 3 ± r .
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NTT and Modular Arithmetic

Montgomery and Barrett Arithmetic

State-of-the-art: Montgomery and Barrett arithmetic.

Algorithm 1 Signed Mont-
gomery multiplication
Input: Constant β = 2l where l is the machine word

size, odd q such that 0 < q < β
2 , and operand

a, b such that − β
2 q ≤ ab < β

2 q
Output: r ≡ abβ−1 mod q, r ∈ (−q, q)
1: c = c1β + c0 = a · b
2: m = c0 · q−1 mod± β

3: r = c1 − ⌊m · q/β⌋
4: return r

Algorithm 2 Barrett multiplica-
tion
Input: Operand a, b such that 0 ≤ a · b < 22l′+γ ,

the modulus q satisfying 2l′−1 < q < 2l′ , and
the precomputed constant λ =

⌊
22l′+γ/q

⌋
Output: r ≡ a · b mod q, r ∈ [0, q]
1: c = a · b
2: t = ⌊(c · λ)/22l′+γ⌋
3: r = c − t · q
4: return r

Both Montgomery and Barrett multiplication:
• need 3 multiplications;
• use the product c = a · b twice;
• replace division with cheaper shift (non-word-size for Barrett’s).
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NTT and Modular Arithmetic

Plantard’s Word Size Modular Multiplication

Plantard [Pla21] proposed a novel word size modular multiplication
(Plantard multiplication). For simplicity, we denote X mod 2l ′ as
[X ]l ′ , X >> l ′ as [X ]l

′ below.

Algorithm 3 Original Plantard Multiplication [Pla21]
Input: Unsigned integers a, b ∈ [0, q], q < 2l

ϕ
, ϕ = 1+

√
5

2 , q′ ≡ q−1 mod 22l ,
where l is the machine word size

Output: r ≡ ab(−2−2l)mod q where r ∈ [0, q]
1: r =

[(
[[abq′]2l ]

l
+ 1

)
q
]l

2: return r

Plantard multiplication:
• also needs 3 multiplications;
• uses the product a · b once; saves one multiplication when one

of the operands (b) is constant by precomputing bq′ mod 22l ;
• has many similarities with Montgomery arithmetic.
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NTT and Modular Arithmetic

Motivations

Plantard multiplication has the following properties:
1 Pros: One multiplication can be saved when multiplying a

constant; but it introduces an l × 2l-bit multiplication.
2 Cons: The original Plantard multiplication only supports

unsigned integers. In LBC schemes, this requires
• an extra addition by a multiple of q during each butterfly unit;
• expensive modular reduction after each layer of butterflies.

The state-of-the-art Montgomery multiplication:
• supports signed inputs in −q2l−1 < ab < q2l−1;
• enables excellent lazy reduction strategy in NTT/INTT.

Motivations. We aim to support signed integers for Plantard
multiplication, enlarge its input range, and utilize its efficient
modular multiplication by a constant in LBC.
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Improved Plantard Arithmetic

Observations:
• The original modulus restriction: q < 2l−1 < 2l

ϕ .
• The moduli in LBC are much smaller, e.g., 12-bit modulus

3329 in Kyber, 13-bit modulus 7681 in NTTRU.
Trick 1. Stricter modulus restriction q < 2l−α−1 < 2l−α

ϕ by
introducing a small positive integer α.

Algorithm 4 Improved Plantard multiplication
Input: Operands a, b ∈ [−q2α, q2α], q < 2l−α−1 < 2l−α

ϕ , q′ =

q−1 mod± 22l

Output: r = ab(−2−2l)mod± q where r ∈ (− q
2 ,

q
2 )

1: r =
[(

[[abq′]2l ]
l + 2α

)
q
]l

2: return r
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Correctness Proof

Theorem (Correctness of Algorithm 4)
Let q be an odd modulus, l be the minimum word size (power of 2
number, e.g., 16, 32, and 64) such that q < 2l−α−1 < 2l−α

ϕ , where
α > 0 and ϕ = 1+

√
5

2 , then Algorithm 4 is correct for
−q2α ≤ a, b ≤ q2α.

Proof of the above Theorem.
The main step of Algorithm 4 is r =

[(
[[abq′]2l ]

l + 2α
)

q
]l

,
namely:

r =


(⌊

abq′mod± 22l

2l

⌋
+ 2α

)
q

2l

 .
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Correctness Proof: Step 1
We first check that r ∈ (− q

2 ,
q
2 ). Since

⌊
abq′ mod± 22l

2l

⌋
∈ [−2l−1, 2l−1 − 1], we

have ⌈
(−2l−1 + 2α)q

2l

⌉
≤r ≤

⌊
(2l−1 − 1 + 2α)q

2l

⌋
⌈
−q

2 +
q

2l−α

⌉
≤r ≤

⌊
q
2 +

(2α − 1)q
2l

⌋
.

Since q
2l−α < 1

2 , we can get r > − q
2 from the left-hand side of the inequation.

Let’s consider q
2 + (2α−1)q

2l on the right-hand side; since q < 2l−α−1 < 2l−α

ϕ
, we

obtain that
(2α − 1)q

2l <
q2α

2l <
2α2l−α−1

2l =
1
2 .

Since q is an odd number, then⌊
q
2 +

(2α − 1)q
2l

⌋
=

⌊q
2

⌋
<

⌊
q + 1

2

⌋
.

Therefore, the result r lies in (− q
2 ,

q
2 ).
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Correctness Proof: Step 2

Then, we check that r = ab(−2−2l)mod± q. Since q < 2l−α−1 < 2l−α

ϕ
is an

odd number, there exists a 2l-bit number p = abq−1 mod± 22l so that

pq − ab ≡
(

abq−1
)

q − ab mod 22l ≡ ab − ab mod 22l ≡ 0mod 22l .

Then, pq − ab is divisible by 22l , so

ab
(
−2−2l

)
mod q ≡ pq − ab

22l .

Let p1 =
⌊ p

2l

⌋
, p0 = p − p12l and p0 ∈ [0, 2l).

Trick 2. Instead of analyzing q2l − p0q + ab in the original work, we slightly
modify the equation to q2l+α − p0q + ab. The correctness of the original
Plantard multiplication is based on the inequality: 0 < q2l − p0q + ab < 22l .
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Correctness Proof: Step 2

We now check that our modified equation q2l+α − p0q + ab also satisfies this
inequality:

0 < q2l+α − p0q + ab < 22l (1)

under the restrictions q < 2l−α−1 < 2l−α

ϕ
, α > 0, and −q2α ≤ a, b ≤ q2α.

(1) First, as for two positive inputs or two negative inputs a, b, we have

q2l+α − p0q + ab < q2l+α + ab ≤ q2l+α + (q2α)2

<
2l−α

ϕ
· 2l+α + (

2l−α

ϕ
· 2α)2 =

22l

ϕ
+

22l

ϕ2 = 22l · ϕ+ 1
ϕ2 .

Since ϕ+1
ϕ2 = 1 according to [Pla21], we have q2l+α − p0q + ab < 22l . The

proof of the right-hand side of Equation 1 ends.
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Correctness Proof: Step 2
(2) As for one positive and one negative input such that ab < 0, we have

q2l+α − p0q + ab ≥ q2l+α − q2l − q222α = q
(

2l+α − 2l − q22α
)

> q(2l+α − 2l − 2l−α−122α) = q(2l+α−1 − 2l) ≥ 0.

The proof of the left-hand side of Equation 1 ends. Therefore, we obtain

0 <
q2l+α − p0q + ab

22l < 1.

Overall, we have the following equation:

ab
(
−2−2l

)
mod q ≡ pq − ab

22l ≡
⌊

pq − ab
22l +

q2l+α − p0q + ab
22l

⌋
≡

⌊
qp12l + q2l+α

22l

⌋

≡
⌊

q(p1 + 2α)

2l

⌋
≡

q
(⌊

abq−1 mod± 22l

2l

⌋
+ 2α

)
2l

 .

For signed inputs, we have ab(−2−2l)mod± q =
[(

[[abq′]2l ]
l
+ 2α

)
q
]l

= r .

Junhao Huang et. al BNU-HKBU United International College
Improved Plantard Arithmetic for Lattice-based Cryptography, TCHES2022 16 / 37



Introduction Improved Plantard Arithmetic Optimized Implementation on Cortex-M4 Results Conclusions

Correctness Proof: Step 2
(2) As for one positive and one negative input such that ab < 0, we have

q2l+α − p0q + ab ≥ q2l+α − q2l − q222α = q
(

2l+α − 2l − q22α
)

> q(2l+α − 2l − 2l−α−122α) = q(2l+α−1 − 2l) ≥ 0.

The proof of the left-hand side of Equation 1 ends. Therefore, we obtain

0 <
q2l+α − p0q + ab

22l < 1.

Overall, we have the following equation:

ab
(
−2−2l

)
mod q ≡ pq − ab

22l ≡
⌊

pq − ab
22l +

q2l+α − p0q + ab
22l

⌋
≡

⌊
qp12l + q2l+α

22l

⌋

≡
⌊

q(p1 + 2α)

2l

⌋
≡

q
(⌊

abq−1 mod± 22l

2l

⌋
+ 2α

)
2l

 .

For signed inputs, we have ab(−2−2l)mod± q =
[(

[[abq′]2l ]
l
+ 2α

)
q
]l

= r .

Junhao Huang et. al BNU-HKBU United International College
Improved Plantard Arithmetic for Lattice-based Cryptography, TCHES2022 16 / 37



Introduction Improved Plantard Arithmetic Optimized Implementation on Cortex-M4 Results Conclusions

Comparisons

(1) versus Original Plantard multiplication.
• Signed support. Supports signed inputs and produces signed

output in (− q
2 ,

q
2 ).

• Input range. Extends the input range from [0, q] up to
[−q2α, q2α]. Eliminate the final correction step in the original
version.

(2) versus Montgomery and Barrett arithmetic.
• Efficiency. The Plantard arithmetic saves one multiplication when

multiplying a constant. Moreover, the Barrett arithmetic may
require an explicit shift operation for a non-word-size offset.

• Input range. The Plantard reduction accepts input in
[−q222α, q222α], which is about 2α times bigger than Montgomery
reduction [−q2l−1, q2l−1]. Besides, the improved Plantard
reduction can replace the Barrett reduction inside the NTT/INTT
of Kyber and NTTRU.
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Comparisons

• Output range. The output range of the improved algorithm is 1×
smaller than the Montgomery algorithm. Therefore, it halves or
slows down the growing rate of the coefficient size in the NTT with
CT butterflies or the INTT with GS butterflies, respectively.

(3) Weak Spots.
• Special Multiplication. The Plantard arithmetic introduces an

l × 2l-bit multiplication. We show that it is perfectly suitable on
Cortex-M4/7 and some 32-bit microcontrollers when l = 16.

• Load/Store Issue. The precomputed twiddle-factors are
double-size compared to the implementation with Montgomery
arithmetic. It requires extra cycles to load/store the twiddle factors.
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Efficient Plantard Arithmetic for 16-bit Modulus on Cortex-M4

Target Platform: Cortex-M4

Cortex-M4:
• NIST’s reference platform (the popular pqm4 repository:

https://github.com/mupq/pqm4);
• 1MB flash, 192kB RAM.
• 14 32-bit usable general-purpose registers; 32 32-bit FP

registers;
• SIMD extension: uadd16, usub16 perform addition and

subtraction for two packed 16-bit vectors; smulw{b,t} can
efficiently compute the 16× 32-bit multiplication in Plantard
arithmetic.
• 1-cycle multiplication instruction: smulw{b,t},

smul{b,t}{b,t}
• Relative expensive load instructions, e.g., ldr, ldrd, vldm.
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Efficient Plantard Arithmetic for 16-bit Modulus on Cortex-M4

Efficient Plantard multiplication by a constant

(1) We set l = 16, α = 3 in Kyber, α = 2 in NTTRU s.t. q < 2l−α−1 < 2l−α

ϕ
.

(2) Efficient 2-cycle improved Plantard multiplication by a constant:
• reduce b down [0, q); the input range of a is extended to [−q22α, q22α].

•
[(

[[abq′]2l ]
l
+ 2α

)
q
]l

vs
[
q [[abq′]2l ]

l
+ q2α

]l
.

Algorithm 5 The 2-cycle im-
proved Plantard multiplication
by a constant on Cortex-M4
Input: An l-bit signed integer a ∈ [−2l−1, 2l−1), a

precomputed 2l-bit integer bq′ where b is a con-
stant and q′ = q−1 mod± 22l

Output: rtop = ab(−2−2l ) mod± q, rtop ∈ (− q
2 ,

q
2 )

1: bq′ ← bq−1 mod± 22l ▷ precomputed
2: smulwb r, bq′, a ▷ r ← [[abq′]2l ]

l

3: smlabb r, r, q, q2α ▷ rtop ← [q[r ]l + q2α]l

4: return rtop

Algorithm 6 The 3-cycle Mont-
gomery multiplication on Cortex-
M4 [ABCG20]
Input: Two l-bit signed integers a, b such that ab ∈

[−q2l−1, q2l−1)
Output: rtop = ab2−l mod± q, rtop ∈ (−q, q)
1: mul c, a, b
2: smulbb r, c,−q−1 ▷ r ← [c]l ·

(
−q−1

)
3: smlabb r, r, q, c ▷ rtop ← [[r ]l · q]l + [c]l

4: return rtop
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Efficient Plantard Arithmetic for 16-bit Modulus on Cortex-M4

Efficient Plantard reduction

Plantard reduction for the modular multiplication of two variables.
• As efficient as the state-of-the-art Montgomery reduction;
• The input range is c ∈ [−q222α, q222α], which is about 2α

times than Montgomery’s (−q2l−1, q2l−1).

Algorithm 7 The 2-cycle improved Plantard reduction on Cortex-
M4
Input: A 2l-bit signed integer c ∈ [−q222α, q222α]
Output: rtop = c(−2−2l)mod± q, rtop ∈ (−q

2 ,
q
2 )

1: q′ ← q−1 mod± 22l ▷ precomputed
2: mul r , c, q′

3: smlatb r , r , q, q2α
4: return rtop
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Butterfly unit

• Precompute twiddle factors as ζ = (ζ · (−22l)mod q) · q−1 mod± 22l ;
• smulwb and smulwt for l × 2l-bit multiplication; reduce 2 cycles.

Algorithm 8 Double CT butterfly on Cortex-M4
Input: Two 32-bit packed signed integers a, b (each containing a pair of 16-bit

signed coefficients), the 32-bit twiddle factor ζ
Output: a = (atop + btopζ)||(abottom + bbottomζ), b = (atop − btopζ)||(abottom −

bbottomζ)
1: smulwb t, ζ, b
2: smulwt b, ζ, b
3: smlabb t, t, q, q2α

4: smlabb b, b, q, q2α

5: pkhtb t, b, t, asr#16
6: usub16 b, a, t
7: uadd16 a, a, t
8: return a, b
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Layer merging: 3-layer merging strategy
Using the improved Plantard arithmetic introduces the 32-bit twiddle factors,
thus requiring extra loading cycles.
• Each iteration of each layer computes 8 butterflies over 16 coefficients at

the cost of loading 1, 2, or 4 twiddle factors.
• Reduce 8 cycles at the cost of 0, 1, or 2 extra cycles for loading twiddle

factors (ldr,ldrd) in each iteration of each layer.

ζ1 

ζ2 

ζ3 

ζ4 

ζ6 

ζ5 

ζ7 

ζ1 

ζ3 

ζ2 

ζ4 

ζ5 

ζ6 

ζ7 16 16

Figure 1: 3-layer merging CT butterfly
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Layer merging: 4-layer merging strategy

• Each iteration of each layer computes 16 butterflies over 32
coefficients at the cost of loading 1,2,4, or 8 twiddle factors.

• The 4-layer merging strategy is used only when twiddle factors are
reused multiple times.

• The Montgomery-based implementation loads all 15 twiddle factors
into 8 FP registers with vldm instruction once and replaces the
2-cycle ldrh,ldr with the cheaper 1-cycle vmov.

• Instead of packing 15 16-bit twiddle factors into 8 32-bit FP
registers, we need 15 32-bit FP registers. The vldm with 15
registers needs 7 more cycles than the one with 8 registers.

• Each iteration needs 7 extra vmov instructions to retrieve the
twiddle factors from the FP registers to general registers, namely
reduces 16× 4 cycles with the cost of 7 extra cycles.
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Better lazy reduction strategies

(1) Montgomery reduction:
input range: [−q2l−1, q2l−1], output range: (−q, q).
(2) Improved Plantard reduction:
input range: [−q222α, q222α], output range: (−q

2 ,
q
2 ).

x x

CT butterfly GS butterfly

Figure 2: CT and GS butterflies

• CT butterfly: Coefficients grow by q or q
2 after each layer.

• GS butterfly: The first half of the coefficients double while
the second half are reduced down to q or q

2 after each layer.
Junhao Huang et. al BNU-HKBU United International College
Improved Plantard Arithmetic for Lattice-based Cryptography, TCHES2022 26 / 37



Introduction Improved Plantard Arithmetic Optimized Implementation on Cortex-M4 Results Conclusions

Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Better lazy reduction strategies: CT butterflies

Kyber: q = 3329(9q < 2l−1 < 10q). The input of NTT is smaller than q.
• Montgomery: 7 layers of butterflies generates 256 coefficients by 7q.

Require 1 modular reduction for 256 coefficients since 8q is bigger than
the input range of Montgomery multiplication, i.e., [−

√
q2l−1,

√
q2l−1].

• Plantard: 7 layers of butterflies generates 256 coefficients by 3.5q. 4.5q
lies in the input range of Plantard multiplication, i.e., [−q2α, q2α].

NTTRU: q = 7681(4q < 2l−1 < 5q). The input of NTT is smaller than 0.5q.
• Montgomery: We need two modular reductions after the 3rd and 6-th

layer. The final two layers of butterflies generate coefficients smaller than
3q, which is bigger than the input range of Montgomery multiplication;
thus one more modular reduction for 768 coefficients is required.

• Plantard: Only needs one modular reduction after the 7-th layer. The
final layer of butterflies generates coefficients smaller than 1q, which lies
in the input range of Plantard multiplication.
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

Better lazy reduction strategies: GS butterflies

Kyber: q = 3329(9q < 2l−1 < 10q). The advantages of applying the Plantard
arithmetic are twofold in Kyber:
• Halve the matrix-vector product from kq to kq

2 , k = 2, 3, 4 and have
one-layer delay of the modular reduction. One modular reduction is
required after the 2nd and 3rd layer when k = 3, 4 and k = 2.

• After one modular reduction, 4 layers of butterflies can be carried out
instead of 3 with Montgomery arithmetic.

For Kyber768/Kyber1024, one modular reduction is needed after the 2nd layer.
Then, after the 6th layer, 16 coefficients (a0 ∼ a7, a128 ∼ a135) will grow to 8q
and need to be reduced instead of 128 coefficients with Montgomery arithmetic.

NTTRU: q = 7681(4q < 2l−1 < 5q).
• After one modular reduction, 3 layers of butterflies can be carried out

instead of 2 with Montgomery arithmetic.
• Only need two modular reductions for 384 coefficients instead of four

with Montgomery arithmetic.
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Efficient 16-bit NTT/INTT Implementation on Cortex-M4

5-cycle double Plantard reduction inside NTT/INTT

• The Plantard reduction over a 16-bit signed integer can be viewed as a
Plantard multiplication by the “Plantard” constant −22l mod q;

• 1-cycle/3-cycle faster than the 6-cycle/8-cycle double Barrett reduction
with/without explicit shift operations in [AHKS22], and 2-cycle faster
than the 7-cycle double Montgomery reduction in [ABCG20].

Algorithm 9 Double Plantard reduction for packed coefficients
Input: A 32-bit packed integers a = atop||abottom where atop, abottom are two 16-bit

signed coefficients
Output: r = (atop mod± q)||(abottom mod± q), −q/2 < rtop, rbottom < q/2
1: const ← (−22l mod q) · (q−1 mod± 22l)mod± 22l ▷ precomputed
2: smulwb t, const, a
3: smulwt a, const, a
4: smlabt t, t, q, q2α

5: smlabt a, a, q, q2α

6: pkhtb r , a, t, asr#16
7: return r
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Extensibility on Other Platforms and Schemes

Extensibility on other 32-bit microcontrollers
• The improved Plantard arithmetic for 16-bit modulus on Cortex-M4 relies

on the efficiency of the 16× 32-bit multiplication instruction smulwb.
• The Plantard multiplication by a constant on other 32-bit microcontroller,

like RISC-V, is shown in Algorithm 10. It reduces 1 multiplication and
introduces 1 shift instruction compared to Montgomery’s.

Algorithm 10 The improved Plantard multiplication by a constant
on RISC-V
Input: A 32-bit signed integer a ∈ [−q22α, q22α], a precomputed 2l-bit integer

bq′ where b is a constant, q′ = q−1 mod± 22l

Output: r = ab(−2−2l)mod± q, r ∈ (− q
2 ,

q
2 )

1: bq′ ← bq−1 mod± 22l ▷ precomputed
2: mul r , a, bq′ ▷ r ← [abq′]2l
3: srai r , r ,#16 ▷ r ← [[abq′]2l ]

l

4: mul r , r , q
5: add r , r , q2α ▷ r ← q[[abq′]2l ]

l + q2α

6: srai r , r ,#16 ▷ r ← [q[[abq′]2l ]
l + q2α]l

7: return r
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Performance of the Polynomial Arithmetic
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Performance of Schemes
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Conclusions and Future Work

Conclusions:
• An improved Plantard arithmetic taliored for Lattice-based

cryptography.
• Excellent merits over the original Plantard, Montgomery, and

Barrett arithmetic.
• Speed-ups for Kyber and NTTRU with 16-bit NTT on

Cortex-M4.
Furture work:
• Application on other platforms like AVX2, NEON or other

32-bit microcontrollers.
• Application on other schemes with 32-bit NTT like Saber,

NTRU, Dilithium.
• Application in other scenarios where modular multiplication by

a constant is widely used.
Junhao Huang et. al BNU-HKBU United International College
Improved Plantard Arithmetic for Lattice-based Cryptography, TCHES2022 35 / 37



Introduction Improved Plantard Arithmetic Optimized Implementation on Cortex-M4 Results Conclusions

References I

[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard.
Cortex-M4 optimizations for {R, M} LWE schemes.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):336–357, 2020.

[AHKS22] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan Sprenkels.
Faster Kyber and Dilithium on the Cortex-M4.
In Giuseppe Ateniese and Daniele Venturi, editors, Applied Cryptography and Network Security - 20th
International Conference, ACNS 2022, Rome, Italy, June 20-23, 2022, Proceedings, volume 13269 of
Lecture Notes in Computer Science, pages 853–871. Springer, 2022.

[LS19] Vadim Lyubashevsky and Gregor Seiler.
NTTRU: Truly fast NTRU using NTT.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):180–201, 2019.

[Pla21] Thomas Plantard.
Efficient word size modular arithmetic.
IEEE Trans. Emerg. Top. Comput., 9(3):1506–1518, 2021.

Junhao Huang et. al BNU-HKBU United International College
Improved Plantard Arithmetic for Lattice-based Cryptography, TCHES2022 36 / 37



Introduction Improved Plantard Arithmetic Optimized Implementation on Cortex-M4 Results Conclusions

Thanks!
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