o—O —o jtﬁﬁ%:& IEZSX 0-02‘!20

| BEIJING NORMAL-HONG KONG BAPTIST UNIVERSITY Ol
ot °

On Modular Arithmetic and Polynomial
Multiplication in Lattice-based
Cryptography
-- Doctoral Defense for the PhD of HKBU

PhD Candidate: Junhao HUANG (EZ&
Supervisor: Dr. Donglong CHEN
03/06/2025

i

N
oD S aamo

w

[]

Outline

Introduction

Improved Plantard Arithmetic

Efficient LBC on IoT Devices

Efficient Side-Channel Secure
LBC on IoT Devices

Conclusions

Introduction

1.1 Background

1.2 Lattice-based Cryptography

1.3 Contributions

ol

@ D 2005 G @

21©

1.1.1 Quantum Computers NS

Quantum computers are being developed rapidly. Shor’s algorithm in quantum
computers would break the existing public-key cryptosystem (PKC) in polynomial time.

/ e \ 4 Protocols)

b DNS, TLS, SSH...
QUANTUM
COMPUTING 7R Browsers
Threat Chrome, Safari,
RSA Edge...
2021: 66b Zuchongzhi; Q dge
2021: IBM’s 126b Eagle; Messaain
2022: IBM’s 433b Osprey. ElGamal ging
2024: Google’s Willow WhatsApp,
Smin vs 102%° years ECC Facebook,
\ / \ / \ Wechat...

N

This prompted the cryptographic community to search for suitable alternatives to
traditional PKC.

2.
e

1.1.2 Post-quantum Cryptography NS

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the
post-quantum cryptographic algorithms (PQC). Chinese ICCS started to call for
commercial PQC standardization in 2025 [1].

Table 1: Round 3 and Round 4 NIST PQC finalists

| Round | Rouwnd3 | Rowndd ___

Types KEM DSA KEM DSA
ey Kyber Dilithium
Kyber Dilithium (ML-KEM) (ML-DSA)

Falcon
Saber Falcon - (FN-DSA)
Schemes Sohinest

:) phincs
NTRU Rainbow (SLH-DSA)

Classic)))
McEliece

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of
security and efficiency. Therefore, we will focus on LBC.

https://www.niccs.org.cn/

1.1.3 Internet of Things

ol

')!O

The Internet of Things (IoT) is pervasive in many aspects of modern life, such as smart
healthcare, smart transportation, industrial IoT, smart tourism, and wearable technology.

Smart VR
Smart bracelet
watch

Smart
lasses

Electronic
police

Traffic
control

Smart
Helthcare

Internet

Water
monitoring

Industrial
loT

Soil monitoring

Smog
monitoring

Agricultura
loT

Special
Application

Crowd

Self Safety monitoring
guided precaution
tour

Internet of
Vehicles

Online

of Things map

Table 2: Number of Internet of Things (IoT) connected
devices worldwide (billion) from 2019 to 2021

35

30 29.42

25

in billions

20

ted devices

2019 2020 2021 2022* 2023* 2024* 2025* 2026% 2027+ 2028+ 2029* 2030*

It requires huge effort to protect billions of IoT devices from the threat of quantum computing.

[
1.1.4 PQC on the IoT: Challenges %fé

The IoT devices are distinct from the traditional CPUs.

_ Wireless
Sensors Microprocessor communication
wma | mumnf o memsR)

Battery ==h) @

Low-power Low-resource Low-memory Heterogeneous

|

|

|

|

|

|

. _ e The ISA and B
Access to main Limited Limited ' . '
micro-design i
|

|

|

|

|

|

|

|

power or instructions, memory due to
vary from each

other (ARM
and RISC-V)

reliance on registers due to the size and
battery micro-design price

Figure 1.1: Four major limitations of IoT devices

Challenges: explore the efficient, lightweight and secure LBC implementation tailored

for heterogeneous IoT devices.

1.2.1 Lattice-based Cryptography Mo

Lattice-based cryptography relies on the computational difficulty of lattice:

m
L(by, .., by,) = {z x;b;, x; € T}
i=1
, where by, ..., b, are basis vectors. The lattice can be expressed as the sum of x;b;.

The hardness of two LBC finalists Kyber and Dilithium are based on the MLWE and
MSIS problems:

> Module Short Integer Solution (MSIS): Given an n X m lattice A € ZZ*™, find a
nonzero short integer vector x € Z™ satisfying Ax = 0 mod q.

» Module Learning with Errors (MLWE): Given an n X m lattice A € Z7*™™ and a
randomly generated sample e, recover s € Zg from (4, ATs + e mod q).

ole,
1.2.2 LBC Core Operations and Structure *%5"

U Time and memory consuming operations

> Polynomial sampling: SHA-3 (Keccak, 70% of running time)
> Polynomial multiplication: NTT/INTT (O(nlogn) & modular arithmetic);
» Matrix-vector product: large memory consumption.

1 LBC structure

Polynomial
Arithmetic

Modular Arithmetic
arithmetic arithmetic arithmetic

Figure 1.2: An overall structure of the LBC schemes

1.2.3 Cryptographic Engineering NS

O Cryptography deployment in real-world devices

Cryptography: Theoretical Security Cryptographic Engineering: Practical Security

o PR

Asymmetric Encryption headspin

Low- Low-
Power Resource

Electrical Computer Low- Hetero-
Engineering Science Memory geneous

1.3.1 Optimizations Overview NS

Devices |

__

Masklng

Generation of the
public matrix

Other main steps
in LBC protocols

Plantard
arithmetic

Barrett
reduction

Specialized

ﬁ Montgomery
' reduction

arithmetic

o ole,
1.3.2 Contributions NS

Objective
The contributions of this thesis are summarized as follows: Achieved
1. Improved Plantard arithmetic tailored for LBC.
» Two improvements for Plantard arithmetic tailored for LBC; Mathematical
» Two variants of correctness proofs, demonstrating its robustness; Iml};‘;“t’f‘,’me“t &
» Excellent merits over the state-of-the-art modular arithmetic. ey

2. Faster Plantard arithmetic, NTT, Keccak and LBC implementations.
» Faster Plantard arithmetic implementation on [oT platforms;
» Optimized 16-bit NTT and multi-moduli NTT implementations with| Implementation

Plantard arithmetic; Efgde“?y &
» Optimized Keccak permutation on the 32-bit ARMv7-M (over 20% ceurtty
speedups);
» State-of-the-art Kyber, NTTRU, and Dilithium implementations on the
target platforms.

3. Efficient, lightweight and side-channel secure Raccoon implementations.
» Optimized the multi-moduli NTT of the 32-bit NTTs with Montgomery

arithmetic; Implementation
» Time complexity reduction of the masking gadgets; Efficiency &
> Memory optimizations to enable high-order Raccoon on memory- Lsiegch“tzggi‘)

constrained IoT devices.

@ D 2005 G @

Improved Plantard Arithmetic

2.1 State-of-the-art Modular Arithmetic

2.2 Improved Plantard Arithmetic

2.3 Further Improvement of Plantard Arithmetic
2.4 Another Variant of Plantard Arithmetic

2.5 Comparisons

2.1.1 State-of-the-art Modular Arithmetic "0

] State-of-the-art modular arithmetic, i.e., a X b % q

Both Montgomery (1985) and Barrett multiplication (1986) for [-bit modulus (I = 16 or 32):

» need 3 multiplications;
» use the product c = a X b twice;

» support signed inputs in a large domain, which enable a lazy reduction strategy

Algorithm 1 Signed Mont-
gomery multiplication

Input: Constant [= 2! where I is the machine
word size, odd g such that 0 < g < g, and
B B

operand a, b such that —5q < ab < 5gq
Output: r = abB Y mod g, r € (—q,q)
1: c=c1f3+co=a-b
2: m:co-q_lmodiﬁ
3ir=ca—|m-q/8]

4: return r

Algorithm 2 Barrett multiplica-
tion

Input: Operand a, b suchthat 0 < a- b < 22;!_'_7,
the modulus g satisfying 2'“;_1 < q < 2'”, and
the precomputed constant A = {22”—”{/@

Output: r = a- bmod g, r € [0, 34]

l: c=a-»b

20t = |(c-)22+

3ir=c—t- q

4: return r

2.1.2 Original Plantard Arithmetic e

1 Plantard’s seminal word-size modular arithmetic
Algorithm 15 Original Plantard multiplication [92]

Input: Unsigned integers a,b € [0,¢]. ¢ < 2,6 = 1+2‘/5, ¢ = ¢ ' mod 2%, where [is

the machine word size

Output: r = ab(—2"%)mod ¢ where r € [0, ¢

I
1. r = [([[abq’ Jar]' + 1) q] > bg' could be precomputed when b is constant
9. return r Il [a]; « amod 2}, [a]'! « a > I,

Plantard multiplication:

Pros:

» When one of the operands (b) is fixed, it is one multiplication fewer than
Montgomery arithmetic. (Suitable for NTT computation!)

Cons:

> Introduces an [X 2[-bit multiplication bq’. (Only suitable on specific platforms)

> only supports unsigned integers in a small domain [0, q]. (How to support signed
integers in a larger input range?)

2.2 Improved Plantard Arithmetic o

O Improved Plantard arithmetic (TCHES2022)

> Tailored for LBC word size moduli: proposed a new modulus restriction g < 2!7¢-1
by introducing a small integer @« > 0; provided two versions of correctness proof.
» Following the proof of the original Plantard arithmetic paper.
» The CRT interpretation from Prof. Guangwu Xu[2].
» Larger input range: from unsigned integers [0, g] to signed integers in [—q2%, q2“];

» Smaller output range: from [0, q] signed integer in [— qTH,g);

» Inherent advantage: when b is a constant, it can save one multiplication by
precomputing bq’ mod 22,

Algorithm 16 Improved Plantard multiplication

Input: Two signed integers a,b € [—¢2%,¢2°],q¢ < 277!, ¢’ = ¢ mod™ 2%
Output: 7 = ab(—2"?) mod® ¢ where r € [—%1, 1)
z
7= | ([labgar)' +2°) q]

2: return r

[1] Junhao Huang, Jipeng Zhang, et al*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IJACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4): 614-636.
[2] Yanze Yang, Yiran Jia, and Guangwu Xu. On modular algorithms and butterfly operations in number theoretic transform.

Cryptology ePrint Archive,2024.

2.3 Further Improvement of Plantard
Arithmetic 20
(Plantard arithmetic with larger input range (TIFS2024)

» The improved Plantard mUItiplication Algorithm 17 Plantard multiplication with enlarged input range
supports Signed inputs in Input: Two signed integers a,b such that ab € [q2! — g2/t 2% — g21+*) ¢ <

[_qza” qza’] € (_zl—l’ 21—1), i.e., 9l-a=1 ¢/ — g1 mod* 22
the product of ab € (—22172,221=2)_ Output: r = ab(—2*)mod* g where 1 & [~ 431, 9)
17 = [((labgla]' +2°) o]
» Further extend the input range to 2 return r
ab € [qzl _ q21+0£, 221 _ q21+a).
(refer the correctness proof to the
thesis) mae < (22 = q2"%) /bnaa

= (2% — 3329 x 2'%)/3328 = 230.13¢.

—_

» For Kyber, when b is a constant, the
previous range of a € [—64q, 64q].
After the improvement, the range of a @in > (42 = q27%) [bnaa
is increased up to a € = (3329 x 2'% — 3329 x 2!%)/3328 ~ —137.85¢.
|[—137q,230q], 2. 14 X larger.

[1] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin Kaya Koc, Donglong Chen*. Yet
another Improvement of Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices[J]. I[EEE Transactions on Information

Forensics & Security (TIFS), 2024.

i
2.4 Another Variant of Plantard Arithmetic %f‘

(Another Variant of signed Plantard arithmetic

» Daichi et al.[2] concurrently proposed another variant of signed Plantard arithmetic in
2022.

» The rounding-to-nearest operations in their version are not architecture-friendly in
most platforms.

» In one of the coauthored work[1], we manage to replace one rounding-to-nearest with
one flooring operation, reducing one rounding-to-nearest operation.

Algorithm 18 Signed Plantard multiplication [15]
Input: Two signed integers a, b with |al, |b| < 2!, the odd modulus ¢ < 2/~ and

ql — qfl mod:l: 22[

e —90 + -1 g¢-1
Output: 7 = ab(=2"*)mod™ ¢,r € [-L, 4~] S oods 1
1: 7 = abg’ mod* 22 SIGNED PLANTARD MULTIPLICATION
int64_t signedPlantardMul (int64_t A, int64=t B) {
2:\r = |r/B] return (((a+B [Ox80000000)>>32)I*P +[0%80000000)>>32;
}
3|r=1rq¢/S]

4: return r

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV {32,64}IM{B} {V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1),
2025.

[2] Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi Takagi.Efficient Word Size Modular Multiplication over
Signed Integers. In 29th IEEESymposium on Computer Arithmetic, ARITH 2022, Lyon, France, September12-14, 2022, pages 94—

101. IEEE, 2022.

2.
e

2.5 Comparisons S

1 Excellent merits over the state-of-the-art

» Efficiency: Plantard multiplication is one multiplication faster than the state-of-the-art
Montgomery and Barrett multiplication when b is a constant.

> Input range: [q2! — q2'%, 22! — 27 ®) vs [—q2!1, q2!71] for a = 0, at least 29+1
times bigger than Montgomery’s;

» Output range: [— %1, g) vs (—q, q), only half of the Montgomery’s

Algorithm 7 Signed Montgomery multiplication [Seil§]

Input: Operand a, b such that — ﬁq <ab < gq, where 3 = 2! with the machine word size
[, the odd modulus g € (0, 5 8
Output r=abf ' mod q,r € (q,q)
.c=cf+ecg=a-b

2 m=cy-q 'modT 3 > mod™® obtains a signed product, ¢! is a precomputed
constant
3ty = |m-q/B] > shift right operation

4: =] — tl
5 return r

With all these merits, how to efficiently turn the theoretical improvement into actual
improvements is the remaining question.

@ D 2005 G @

Efficient LBC on IoT Devices

3.1 Target Schemes and Platforms
3.2 Faster Plantard Arithmetic

3.3 Optimized 16-bit NTT Implementation
3.4 Optimized Dilithium’s NTT on Cortex-M3
3.5 Efficient Polynomial Sampling: Keccak

3.6 Results and Comparisons

3.1.1 Target Schemes ne

O Kyber

» The only KEM scheme to be standardized.
> Module-LWE problem (4, b = A”s + e).
> Parameters: n = 256,q = 3329 < 212k = 2,3,4, Z33,0[X]/(X?%° + 1).

O NTTRU

» An NTT-friendly variant of NTRU KEM scheme proposed in TCHES2019.
» The KeyGen, Encaps and Decaps are 30 X, 5 X, and 8 X faster than the respective

procedures in the NTRU schemes.
> Parameters: n = 768,q = 7681, Z,.4,[X] /(X768 — X38% + 1),

U Dilithium

> One out of three final DSA to be standardized.
» Module-LWE problem and Module-SIS problem.
> Parameters: n = 256,q = 8380417 < 223, Zg3g0417[X] /(X?°6 + 1).

9
3.1.2 Target Platforms 7)'74

(d ARM Cortex-M4: Relative high power, resource and memory IoT platform

» NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupg/pgm4);

» 1MB flash, 192KB RAM;

» 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

» SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction
for two packed 16-bit vectors;

» 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

» Relative expensive load/store instructions: 1dr, ldrd, vidm.

» To utilize the efficient SIMD instructions on Cortex-M4, the size of the coefficients is

limited to 16-bit signed integer.

https://github.com/mupq/pqm4

ol
3.1.2 Target Platforms 7)%

(1 ARM Cortex-M3: Low resource IoT platform

» 14 32-bit usable general-purpose registers, no floating-point registers;

» Non-constant time full multiplication instructions: umull, smull, umlal and small; No
SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

» Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the
addition and shifting operations in 1 instruction.

» 512KB flash, 96KB RAM;
U SiFive Freedom RISC-V: Extremely low resource and memory IoT platform

» Open-source ISA;
» Only 16KB RAM;
» 30 32-bit usable general-purpose registers, no floating-point registers;

» No SIMD extensions and limited multiplication instructions: mul, mulh (5-cycle);

3.1.3 Polynomial multiplications 1T

d 16-bit NTT

» Both Kyber and NTTRU use 16-bit NTT for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) implemented with NTT factors the large-degree

polynomial f(X) as

> fO) =I5 i) mod g,
where f;(X) are small degree polynomials like (X% — r) and (X3 + r) for Kyber and

NTTRU, respectively.
O 32-bit NTT

» Dilithium normally uses 32-bit NTT for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) of Dilithium implemented with 32-bit NTT factors the

large-degree polynomial f(X) as

> f(x) =

i=o" fi(x) mod g,

where f;(X) are small degree polynomials like (X — r) for Dilithium.

CT butterfly

a a H
b:Z a —

b
b-(¢

¢

b

GS butterfly

re a—b)-¢

¢

Modular multiplication with the twiddle factors can be speeded up with Plantard arithmetic.

3.2.1 Faster 16-bit Plantard Arithmetic on _oi
Cortex-M4 21®

(Faster Plantard multiplication by a constant on Cortex-M4

» The Plantard multiplication by a constant (b is a constant) saves one multiplication bq’
by precomputing bq’ mod* 22.,

» The 16x32-bit multiplication abq’ is then implemented with smulwb instruction. The rest
of the computations can be simply implemented with one smlabb instruction.

» The Plantard multiplication by a constant on Cortex-M4 is 1-instruction faster than the
state-of-the-art Montgomery’s.

AlgAlgorithm 19 The 2-cycle improved Plantard multiplication by a constant on [12]

InpCortex-M4
Input: An [-bit signed integer a € [—2'1 2!=1), a precomputed 2I-bit integer bq’

ut

where b is a constant and ¢ = ¢! mod™ 2%
1:

‘Output: T'top = ab(_2_21) mOdi q;Ttop € [_%17 %)

. _—1
2, bq' +— bg~' mod* 2% > precomputed)

_ l
3° 9. smulwb r,bq . a S Habq/]2l]l+ [C]
4: 3. smlabb r, 7. q, g2 > Teop < lq[r]i + qza]l

4: return ry,,

3.2.2 Faster 16-bit Plantard Arithmetic on ole,

@ D 2005 G @

Cortex-M3 and RISC-V KN4

(] Faster Plantard multiplication by a constant on Cortex-M3 and RISC-V

» Cortex-M3: We can merge the addition and shift operation using the barrel shifter
operation as in Step 3 of Algorithm 4.

> RISC-V: We can use muh with g2 to merge the mul and asr operation in the final two
steps of Algorithm 4.

» Both implementations are 1-multiplication faster than the Montgomery’s.

Algorithm 4 Efficient Plantard multiplication by a constant Algorithm 5 Efficient Plantard multiplication by a constant

for Kyber on Cortex-M3 for Kyber on RISC-V
Input: An 32-bit signed integer a € [—157¢,230q], a pre- Input: An 32-bit signed integer a € [—157¢,230q], a pre-
Computed 32-bit integer bg’ where b is a constant and computed 32-bit integer bg’ where b is a constant and
¢ = ¢~ mod* 232 ¢ =g 'mod2% ¢2! = ¢ x 2!
Output: 7 = ab(—2"2)mod™ ¢,r € (-4, %) Output: r = ab(—2~?)mod™* ¢,r € (-4, %)
I: bg" < bg~! mod 2% > precomputed 1: bg’ +— bg~! mod™ 22 > precomputed
2: mul 7, a,bq’ > 7 < [abgle; 2: mul 7, a,bq > 7 < [abq']y
3fadd r, 27, 7, ast#16 >r < (|r]" +2%) |3: srai r,r, #16
4: mul 7,7, q 4:_addi r. 1, 2% > 1 ([r]L +29)
5. asr r,r, #16 > 7 < [rq) S:I?ulh r, 7, q2" > 7 < [rq2']*
6: return r 6: return r

3.2.3 Faster 16-bit/32-bit Plantard ole,

@ D 2005 G @

Arithmetic on Other Platforms 21

] Faster 32-bit Plantard multiplication by a constant on 64-bit RISC-V

» The 32-bit Plantard arithmetic can be extended to 64-bit RISC-V. The instruction sequences
are the same as the 16-bit Plantard arithmetic on 32-bit RISC-V [1,2].

() Faster 16-bit Plantard multiplication by a constant on customized RISC-V

» Customized SIMD instruction (asravi) for Plantard arithmetic. Two instructions faster
than the Montgomery arithmetic on the same platform [3].

Algorithm 24 Efficient Plantard multiplication by a constant for Dilithium on Algorithm 25 Efficient Plantard multiplication by a constant for NTRU and Hawk

RVG4IM on customized RISC-V SIMD ISA
Input: An 64-bit signed integer @ € [—130686¢, 131457¢|, a precomputed 64-bit

Input: An 32-bit signed integer a, a precomputed 32-bit integer bg’ where b is a

integer bg’ where b is a constant and ¢ = ¢~ mod 2%, ¢2! = ¢ x 2! constant and ¢ = ¢~ ' mod 2%2, ¢2! = ¢ x 2!

: r=ab(—2"% * .
ORGP = Lol Output: r = ab(—2"2) mod* ¢

1: bg' « bg~' mod* 2% > precomputed

1: bg' + bg~' mod™ 2% > precomputed
2: mul r, a, by’ b 1 < [abg']u
2: mulv r, a, by’ B 1 [abq']y
3: srai r,r, #32
' . ' 3] asravi r,r, 2% > 1+ ([r]' +2%)
1: addi r,r, #256 >r ¢+ ([r]' +2%
. i: mulvh r,r,¢2! b« [rg22
5. mulh 7,7, ¢2' b7 [rg2)% 1 [1 }
6: return r 5 return r

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV{32,64}IM{B} {V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1), 2025.
[2] Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao,and Jingqiang Lin. Eco-crystals: Efficient
cryptography crystals on standard risc-v isa. IEEE Transactions on Computers, pages 1-13, 2024.

[3] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang,Guangyan Li, Donglong Chen, Ray C. C. Cheung, and
Kejie Huang. PQN-TRU: acceleration of ntru-based schemes via customized post-quantum p

2025.

27

i
3.3.1 Optimized 16-bit NTT Implementation %%

U Optimizations summary

Efficient Plantard
multiplication by a
constant

Adequate floating-
point registers

Large input range Efficient Plantard
small output range reduction

Faster modular
reduction of
coefficients

Faster butterfly 4-layer merging
units strategy

Better lazy

reduction strategy

Reducing Reducing a
number of

multiplication memory access
instructions instructions

Minimizing the Reducing
modular reduction multiplication
for polynomial in instructions for
NTT/INTT each polynomial

The proposed improved Plantard arithmetic make it possible to replace previous state-of-
the-art Montgomery arithmetic in the NTT implementation on Cortex-M4, Cortex-M3,
RISC-V and etc, further improving the performance of LBC.

ol
3.3.2 The 16-bit NTT Results S

(d The 16-bit NTT results on Cortex-M4

Table 4.2: Cycle counts for the core polynomial arithmetic in Kyber and NTTRU

on Cortex-M4, i.e., NTT, INTT, base multiplication, and base inversion.

Scheme Implementation NTT INTT Base Mult Base Inv
[12] 6 822 6951 2291 -
This work® 5441 5775 2421 -
Speed-up 20.24% 16.92% -5.67% -
Stack|3] 5967 5917 2293 -
Kyber
Speed|3] 5967 5471 1202 -
This work” 4474 4684/4819/4 854 2422 -

Speed-up (stack) 25.02% 20.84%/18.56%/17.97% -5.58% -
Speed-up (speed) 25.02% 14.38%/11.92%/11.28% -101.41%

[79] 102 881 97986 44703 100 249
NTTRU This work 17274 20931 10550 40763
Speed-up 83.21% 78.64% 76.40% 59.34%

¢ Implementation based on [12], * Implementation based on the stack-friendly code of [3].

ol

3.3.2 The 16-bit NTT Results Ao

(d The 16-bit NTT results on Cortex-M3 and RISC-V

Table 4.3: Cycle counts for the core polynomial arithmetic in Kyber, namely NTT,

INTT and base multiplication, in Kyber on Cortex-M3, SiFive Freedom E310, and

PQRISCV.
Platform Implementation NTT INTT Base Multiplication
Denisa et al. [55] 10874 13049 4821
This work (stack) 8026 8594/8799 4311
Cortex M3 This work (speed) 8026 8594 3028/3922/5851
Speedup (stack) 26.19% 34.14%/32.57% 1.06%
Speedup (speed) 26.19% 34.14% 37.19%/18.65%/-21.37%
— Dewactal 54 2033 ses3

This work (stack) 15888 15719/16 227 10020

This work (speed) 15888 15719 4893/5662/9313

SiFive Freedom E310
Speedup (stack) 34.76% 56.95%/55.53% -

Speedup (speed) 34.76% 56.95% -

a

Denisa et al. [54] 28417 42636 -
This work (stack) 21975 23666,/24 146 12236
This work (speed) 21975 23666 T7747/9795/13068

PQRISCV
Speedup (stack) 22.67% 44.49%/43.37% -

Speedup (speed) 22.67% 44.49% -

a. [54] did not provide results for base multiplication.

3.4.1 16-bit NTT vs 32-bit NTT Sl

(1 16-bit NTT vs 32-bit NTT on Cortex-M3

» Cortex-M3 does not have constant-time full multiplication, which may lead to
insecure 32-bit modular multiplication implementation (side-channel attack).

» The constant-time 32-bit modular multiplication takes 6-8 instructions.

» The constant-time 32-bit CT butterfly takes 19 instructions, compared to 5
instructions for 16-bit CT butterfly;

» The 16-bit NTT is at least 2~3 X faster than 32-bit NTT on Cortex-M3 [1].

NTT | NTT™! o

GKOS18| | constant-time | M4 | 10701 | 11662 -
Dilithium® This work | constant-time | M4 | 8540 | 8923 | 1955
This work | variable-time | M3 | 19347 | 21006 | 4899
This work | constant-time | M3 | 33025 | 36609 | 8479
Kyber® ABCG20] | constant-time | M4 | 6855 | 6983 | 2325
This work | constant-time | M3 | 10819 | 12994 | 4773
<! [ABCG20] | constant-time | M4 | 68131 | 51231 | 6229
NewHopelO24% i work | constant-time | M3 | 77001 | 93128 | 18722

& n = 256,q = 8380417 (23 bits), 8 layer NTT/NTT !
bn = 256,q = 3329 (12 bits), 7 layer NTT/NTT *
°n = 1024, ¢ = 12289 (14 bits), 10 layer NTT/NTT !

[1] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-pact Dilithium implementations on Cortex-
M3 and Cortex-M4. IACR Trans.Cryptogr. Hardw. Embed. Syst., 2021(1):1-24, 2021.

3.4.2 Polynomial multiplication of Dilithium °*%&"

U Small polynomial multiplications: cs;, ct;

» In Dilithium signature generation and verification, there exists a small polynomial ¢ with
at most T nonzero coefficients (+1) and the rest of coefficients are 0.

» The coefficient range of s; is [—n, 7], then the coefficients of the product cs; are smaller
than f = 7 - 7 (smaller than 16-bit).

> The coefficient range of t; is smaller than 212 or 219, then the coefficients of the product
ct; are smaller than B’ = 7 - 212 or B’ = 7 - 219 (bigger than 16-bit).

» According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be
treated as multiplications over Zg, [X]/(X™ + 1) with a well-selected modulus q' > 28
or g’ > 2. In sum, we can use 16-bit NTT for cs; and 32-bit NTT for ct;.

Table 1: Dilithium parameters [DKL™18]

NIST security level 2 3 5
q [modulus] 8380417 8380417 8380417
n [the order of polynomial] 256 256 256
d [drop bits from t] 13 13 13
7 [# of £1's in 39 49 60
71 |y coefficient range] 217 219 219
¥2 [low-order rounding range] (¢ —1)/88 (¢—1)/32 (¢—1)/32
(k1) [dimensions of A] (4,4) (6,5) (8.7)
7 [secret key range] 2 1 2
3 =711 [es; coefficient range] 78 196 120
to coefficient range 212 212 212
t, coefficient range 210 210 210

3.4.3 Proposed cs;, ct; Implementations on ole,

@ I 2005 G @

Cortex-M3 2
1 16-bit NTT over 769 for cs;

» The coefficient range of s; 1s [—n, 1], then the coefficients of the product cs; are smaller
than f = 7 -1 =78, 196 and 120 for three security levels. [AHKS22] used FNT over
257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

» On Cortex-M3: We optimize the 16-bit NTT over 769 with Plantard arithmetic for all
Dilithium variants, because we can then combine it with multi-moduli NTT.

U Multi-moduli NTT with two 16-bit NTTs for ct;

> The coefficient range of t; is 212 or 219, then the coefficients of the product ct; are
smaller than B’ = - 2% = 245760,q" > 23’ = 491520. We choose a composite
modulus ¢' = 769 x 3329 = 2560001 and perform NTT computations over
Zg[X]/(X™ + 1).

» On Cortex-M3: We optimize ct; with the multi-moduli NTT over the g’ = 769 X

3329 for all three Dilithium variants and separately optimize the 16-bit NTT over 769

and 3329 with Plantard arithmetic.
quﬂ = ZQU X Z(h;

Lo [X] /(X + 1) 22 Z [X]/(X? — Q)
Zay [X]/(XP° + 1) 2 Z, [X]/(X? = (),

3.4.4 Multi-moduli NTTs for ct; 70;

K-,

O Multi-moduli NTTs for ct; on Cortex-M3

Algorithm 4 Multi-moduli NT'T for computing 32-bit NTT on Cortex-M3
Input: Declare arrays: int32_t c¢_32[256],t_32[256],tmp_32[256] ,res_32[256]
[int16_t *cl_16=(int16_tx)c_32;

int16_t *ch_16=(int16_t*)&c_32[128];

int16_t *tl_16=(int16_t*)t_32;

int16_t *th_16=(int16_t*)&t_32[128];

int16_t *tmpl_16=(int16_t*)tmp_32;

int16_t *tmph_16=(int16_t*)&tmp_32[128];

1: ¢1_16[256] < ¢,ch_ 16 [256] < ¢ > Pre-store ¢ in the bottom and top halves of
c_32 as 16-bit arrays

Input: Declare pointers: <

2: t1_16[256] <—t,th_16[256] < > Pre-store ¢ in the bottom and top halves of
t_32 as 16-bit arrays
3: c1_16[256] = NTT,, (c1_16) > éop = NTTy, (¢)
4: ch_16[256] = NTT,, (ch_16) > ¢ = NTT, (¢)
5: t1_16[256] = NTT,,(t1_16) > fg = NTTy, (¢)
6: th_16[256] = NTT,, (th_16) > & = NTT, (1)
7: tmpl_16[256] = basemul,,(c1_16,t1_16) > & - fo = basemuly, (o, fo)
8: tmph_16[256] = basemul,, (ch_16,th_16) > & -t = basemuly, (¢1, tl)
9: tmpl_16[256] = INTT,, (tmpl_16) > INTT,, (¢ - to)
10: tmph_16[256] = INTT,, (tmph_16) > INTT,, (& En
11: res_32[256] = CRT(tmpl_16, tmph_16) > CRT(INTT,, (¢ - to), INTqu (C 1))

12: return res_32

3.4.5 Dilithium’s NTT Results %%

(d The 16-bit NTT and multi-moduli NTT results on Cortex-M3

» Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on
Cortex-M3 are 4.22x, 4.29x, and 2.14 X faster than the constant-time 32-bit NTT,
INTT, and pointwise multiplication, respectively. Compared to the 32-bit variable-time
NTT, INTT, and pointwise multiplication, the speed ups are 2.48%, 2.46x, and 1.24 X,
respectively.

» The proposed multi-moduli NTT, INTT and pointwise multiplication
implementations yield 52.76% ~ 54.76% performance improvements compared to the
constant-time 32-bit NTT. And over 19.47% and 19.07% speed-ups compared with the
variable-time 32-bit NTT and INTT.

Platform Prime Ref. NTT INTT Pointwise CRT
8380417 [GKS20] constant-time 33077 36661 8528 X
8380417 [GKS20]| variable-time 19405 21051 4944 X

M3 3329 x 7681 [ACCT22] 16770 19056 11927 4637
769 This work 7830 8543 3989 X

769 x 3329 This work 15626 17037 8061 3735

ol
3.5.1 Efficient Polynomial Sampling: Keccak 7,|d‘

 Pipelining memory access

|| .macro xorb result ,b,g,k,m,s 1| .macro xorb result ,b,g,k,m,s

2 ldr \result, [r0, #\b] 2 ldr \result, [r0, #\bl]

3 ldr ri, [r0, #\g] 3 ldr ri, [r0, #\g]

1 eors \result, \result, rl | ldr r5, [rO, #\k]

5 ldr ri, [r0, #\kl] 5 ldr rii1, [r0, #\m]

6 eors \result, \result, ri 6 ldr ri2, [r0, #\s]

7 ldr ri, [r0, #\m] 7 eors \result, \result, ril
8 eors \result, \result, ri 8 eors \result, \result, rb5
9 ldr ri, [r0, #\s] 9 eors \result, \result, rii
10 eors \result, \result, ri 10 eors \result, \result, ri2
11| .endm 11| .endm

O Lazy rotations

» Utilize the inline barrel shifter instruction on ARMv7-M to merge the xor and ror
instructions, which could help to reduce some cycles.

» We proposed two variants of Keccak implementation considering the code size effect.
One has better performance but requiring larger code size. And one has smaller code

size and an acceptable performance.

O
3.5.2 Keccak Results 7)%

1 Keccak results on Cortex-M3 and M4

» Combining the pipelining memory access and lazy rotations techniques, we achieve
up to 24.78% and 21.4% performance boosts on Cortex-M3 and M4, respectively

Table 4.1: Keccak-p[1600,24] benchmark on Cortex-M3 and M4.

Implementation characteristics™ Speed (clock cycles) Code size RAM
Ref.
ldr/str lazy ror M3 M4 (bytes) (bytes)
XKCP mostly grouped X 13015 11725 5576 264
grouped X 10785 10219 5772 264
This work grouped v (3/4) 9981 9415 6556 264
erouped v (4/4) 9789 9218 0536 264

*All listed implementations take advantage of the in-place processing and bit-interleaving techniques.

3.6 LBC Results: Kyber and NTTRU

ol

')!O

1 Kyber and NTTRU results on Cortex-M4 without Keccak optimization

3%

S55%

KeyGen Encaps Decaps
Scheme | Implementation
k= k= k= k= k= k= k= k= k=
454k | 741k | 1177k | 548k | 893k | 1367k | 506k | 832k | 1287k
12
12 2464 | 2696 | 3584 | 2168 | 2640 | 3208 | 2184 | 2656 | 3224
446k | 729k | 1162k | 542k | 885k | 1357k | 497k | 818k | 1270k
This work®
2464 | 2696 | 3584 | 2168 | 2640 | 3208 | 2184 | 2656 | 3224

NTTRU

This work

9372

7452

8816

¢ ITmplementation based on [12], ® Implementation based on the stack-friendly code of [3].

3.6 LBC Results: Kyber

ol

')!9

 Kyber results on Cortex-M3 and RISC-V without Keccak optimization

Kyber512 Kyber768 Kyber1024
Platform Implementation
KeyGen | Encaps | Decaps | KeyGen | Encaps | Decaps | KeyGen | Encaps | Decaps
h41k 650k 622k 878k 1054k | 1010k | 1388k | 1602k | 1543k
Denisa et al.[55]
2212 2300 2308 3084 2772 2788 3596 3284 3300
519k 628k 590k 844k 1025k | 967k 1342k | 1563k | 1486k
5% Cortex-M3 This work (stack)
2212 2300 2308 3084 2772 2788 3596 3284 3300
518k 626k 587k 842k 1017k | 958k 1333k | 1548k | 1471k
This work (speed)
3268 3860 3 860 4044 4636 4636 4812 5404 5404
2229k | 2927k | 2856k | 4166k | 5071k | 4957k | 6696k | 7809k | 7662k
Denisa et al.[54]
6544 9200 9984 10640 | 13808 | 14944 | 15760 | 19440 | 21056
1937k | 2355k | 2100k | 3147k | 3822k | 3467k | 4964k | 5794k | 5344k
PQRISCV This work (stack)
30% 2408 2488 2520 2952 3016 3032 3464 3528 3544
o
1926k | 2339k | 2084k | 3104k | 3768k | 3413k | 4890k | 5704k | 5254k
This work (speed)
3432 4024 4040 4216 4808 4840 5032 5608 5656
1497k | 1812k | 1601k | 2413k | 2929k | 2635k | 3794k | 4435k | 4045k
This work (stack)
2580 2660 2708 3060 3124 3156 3572 3636 3668
319 SiFive Freedom E310
1597k | 1903k | 1674k | 2731k | 3203k | 2919k - - -
This work (speed)
3620 4212 4244 4340 4932 4964 - - -

3.6 LBC Results: Dilithium B

(Kyber and Dilithium results on Cortex-M3/4 with Keccak optimization

Table 6: PQC benchmark on the Cortex-M4 using the pgm4 framework. Averaged over
1000 executions.

keygen sign/encaps verify /decaps
Scheme Keccak Impl.
speed hashing speed hashing speed hashing

15% Dilithium?2 XKCP 1595k 83.47% 4052k 64.53% 1576k 80.47%
This work 1357k 80.57% 3487k 60.02% 1350k 77.2%

Dilithium3 XKCP 2828k 85.54% 6523k 62.95% 2702k 82.62%

This work 2394k 82.92% 5574k 58.97% 2302k 79.61%

Dilithium5b XKCP 4817k 86.6% 8534k 68.08% 4714k 84.69%

This work 4069k 84.14% 7730k 63.05% 3998k 81.95%

15% Kyber512 XKCP 432k 80.12% 527k 82.86% 472k 73.76%
This work 369k 76.75% 448k 79.85% 409k 69.74%

Kyber768 XKCP 704k 79.04% 860k 82.38% T8k 74.75%

This work 604k 75.59% 732k 79.32% 674k 70.84%

Kyber1024 XKCP 1122k 79.58% 1314k 82.46% 1208k 76.07%

This work 962k 76.18% 1119k 79.41% 1043k 72.29%

@ D 2005 G @

Efficient Side-Channel Secure

LBC on IoT Devices

4.1 Target Schemes and Platforms
4.2 Optimized Polynomial Multiplication
4.3 Lightweight High-order Raccoon

4.4 Results and Comparisons

4.1.1 Target Scheme: Raccoon o ’)TO"

J Raccoon — Side-channel secure LBC scheme

» Raccoon: low-complexity masking-friendly O(d-log d), side-channel secure LBC
scheme.

» Masking gadgets: Complex masking gadgets to secure against side-channel attacks.
(Efficient masking gadgets)

» Hardness: Module-LWE and Module-SIS, similarly to the NIST standard Dilithium.

> Polynomial multiplication: n = 512,q = q; - q; < 2%%,q; = 224 — 218 + 1,q, = 22° —
218 +1,7,[X]/(X°'% + 1). (Efficient 49-bit NTT implementation)

» Memory consumption: At high masking orders, memory consumption becomes the the
major bottleneck for its deployment on IoT devices. (Lightweight implementation of
high-order Raccoon)

4.1.2 Target Platforms %44

(d ARM Cortex-M4: Relative high power, resource and memory IoT platform

» NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupg/pgqm4);

» 1MB flash, 192KB RAM;

» 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

» SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction
for two packed 16-bit vectors;

» 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

» Relative expensive load/store instructions: 1dr, ldrd, vidm.

» New instructions involved: smmla, smmls, smlal.

https://github.com/mupq/pqm4

i
© D 2005 GEN @
®

4.1.3 Polynomial multiplication

O 64-bit NTT

» Raccoon use a 64-bit NTT over a composite modulus g for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) implemented with NTT factors the large-degree

polynomial f(X) as

> fO0) =TIEg" i) mod g,
where f;(X) are small degree polynomials like (X — 7).

(1 Multi-moduli NTT of 32-bit NTTs (more friendly on 32-bit IoT platforms)

» Using the CRT theorem, the 64-bit NTT can be split into two 32bit NTT over two 32-
bit moduli g4 and g, which is more friendly on 32-bit platforms. The overall process is
as follows:

» Polynomial splitting: Two consecutive modular reductions are required to reduce
the 64-bit polynomial coefficients modulo 32-bit g; and q,.

» NTT operations: Two 32-bit NTTs, pointwise multiplications and INTTs over g4
and q-.

» Reconstruction using CRT: Combine the 32-bit results modulo g; and g, into 64-
bit results using the CRT theorem.

ol

4.2.1 Optimized Polynomial Multiplication *%&"

 Polynomial splitting

» Two variants of Montgomery arithmetic: depending on whether —q’ or q' is used;

> State-of-the-art Montgomery arithmetic (2-cycle) on Cortex-M4 use —q'; Not appropriate
for in-place two consecutive modular reductions (Need at least 7 cycles).

» We used q' instead and proposed a 2-instruction faster negative double Montgomery
reductions using the smmla instructions. (Produce the negative of the correct results)

Algorithm 33 Double modular reduc-

tions with original Montgomery reduction

Input: a = ag + a, - 2%

Output: a-2-2mod* ¢, a-2732 mod* ¢,

1:

2:

mul t3, ag, —qh
mov ty, ag

mov fo, ay

smlal ag,ay,ts, gz

mul 3, %y, *(]i

: smlal tl._ f,g‘ t;g, q1

mov dy, tsy

return ag, a,

Algorithm 35 The proposed negative double Montgomery reductions

Input: The 64-bit coefficient a = ag + ay - 2%2, moduli g1, g2, ¢} = ¢; ' mod 232, ¢, =

2

¢; ' mod 2%2

Output: —a-2"*mod* g, —a- 27" mod* ¢

1:

2:

mul t, ap, ¢}

mul to, ag, ¢

neg ., a;

smmla ag, {1, qq, aq

smmla ay, s, g2, 0

i return ag, a;

4.2.1 Optimized Polynomial Multiplication *%&"

0 NTT for negative polynomials

» The proposed negative double Montgomery reductions produce negative of the correct
results.

» The linearity of NTT computations ensures that NTT(-x)=-NTT(x). Therefore, it will not
affect the correctness of the NTT computations.

Property 2 (Linecarity of NTT [5]). Let a,b € Z,, and let x and y be polynomials
in the polynomial ring R, such that NTT(x) =& and NTT(y) = y. Then, the NTT
satisfies: NTT (ax + by) = ax + by.

(1 The optimized 32-bit NTT/INTT implementations

» The 3+3+3 layer merging strategy is used for the 9-layer NTT in Raccoon.
» Lazy reduction is comprehensively used to reduce unnecessary modular reductions.
Only INTT with CT butterfly needs modular reductions for 64 coefficients modulo

91, 92-

4.2.2 Optimized Raccoon Masking Gadgets %%

O Lazy reduction for Raccoon’s masking gadgets

» We thoroughly reduce the conditional additions/subtractions in Raccoon masking
gadgets: ZeroEncoding, Refresh, AddRepNoise, and Decode.
» We carefully analyze the output range of these gadgets and ensure a correct Raccoon

implementation.

Table 5.2: Complexity reduction and output range using the lazy reduction

of conditional operation

Output range (absolute value)

ZeroEncoding 2nd - log(d) q - log(d)
nd + 2nd - log(d) || + ¢ - log(d)
Refresh
2nd + 4nd - log(d) 2| + ¢
AddRepNoise nd - rep || + rep (2" + ¢ - log(d))
n-(d—1) d- |z
Decode
2n - (d — 1) d - |

9
4.3 Lightweight High-order Raccoon 7)%

[Streaming the matrix-vector multiplication

» Streaming the matrix A: save 80 KiB, 140 KiB, and 252 KiB of memory for Raccoon-
128, Raccoon-192, and Raccoon-256.

» Streaming the masked vector [[r]: reduce 4(I — 1)d KiB of memory.
» Other memory reuses: reduce 8k + 41 KiB of memory.

:(}

| 1t

(a) The reference implementation (b) The proposed implementation

Figure 5.1: The matrix-vector multiplication implementations of Ax|r]|=]w]| in

the sign of Raccoon

. e,
4.3.1 Results and Comparisons -

!
O Polynomial arithmetic results on Cortex-M4
» The NTT and INTT are 2. 54 X and 3.98 X faster than the reference implementation.
» The polynomial left- and right-shift are 3. 25 X and 2.93 X faster.
Table 5.3: Cycle counts (cc) of the polynomial arithmetic of Raccoon-128 on
Cortex-M4.
Split Join NTT INTT Left-shift Right-shift Add Addqg®
Ref. [94] 9795 22613 118455 171670 12371 14420 7236 10835
This work 6231 (5718) 13908 46677 43026 3801 4942 5970 9047
Ref/This work 1.57 x (1.71x) 1.63x 2.54x 3.98x 3.25x 293% 1.21 x (1.81x) 1.20x

“Addq denotes the polynomial addition with conditional subtraction of ¢.

ol

4.3.1 Results and Comparisons Ao

] Masking gadgets results on Cortex-M4

» The lazy reduction strategy in the masking gadgets results in 1. 38 X to 2.61X
speedups, which further improve the performance of Raccoon.

Table 5.4: Cycle counts (cc) of the masking gadgets of Raccoon-128 on Cortex-M4.

ZeroEncoding AddRepNoise Refresh N'I'l' Refresh Decode N1l Decode

Ref. [94] 3643 1621694 55 53 7228 7228

= This work 3643 2838159 55 53 7227 7228
‘ Ref. [94] 19377 4785073 40878 68634 10836 14937

=2 This work 14005 2941116 25776 36666 0972 5714

Ref. [94] 100749 4909375 144062 199455 32423 44725 B

=t This work 71581 3028599 95438 117095 17827 17059
Ref. [94] 326040 17286545 4621694 523182 75590 104296

= This work 230879 11084177 278300 321628 41534 39743
. Ref. [94] 900440 17783937 1073626 1294684 161901 223416
=1 This work 636435 11434030 731780 826092 88926 85086
, Ref. [94] 2297856 73123134 2644266 3086391 334528 161657
= This work 1622473 47134002 1813245 2001820 183711 178759

. ol
4.3.1 Results and Comparisons o

(J Raccoon results on Cortex-M4

Table 5.5: Cycle counts (cc) and stack usage (Bytes) of keygen, sign, and verify

of Raccoon on Cortex-M4. Averaged over 1000 iterations.

» The proposed implementations

Raccoon-128 ¢ Raccoon-192 Raccoon-256
0 0 Implementation
reduce 32.46 /0~40.01 /0 Of keygen sign verify | keygen sign verify | keygen sign verify
the ClOCk CYCICS compared tO 29073k | 65719k | 21851k | 45518k | 94450k | 35862k | 73878k | 124020k | 60837k
Ref.[94
5 f (o4 83232 | 230752 | 111960 | 107864 | 290815 | 144800 | 140704 | 505320 | 185832
d=1
Raccoon S rererence 19637k | 39628k | 13226k | 30044k | 56658k | 21460k | 47631k | 79214k | 36098k
. . This work
lmplementatlon. 82584 | 230104 | 111248 | 107232 | 332568 | 144152 | 140040 | 504664 | 185184
35245k | 72595k | 21851k | 53705k | 103777k | 35858k | 85407k | 136329k | 60839k
Ref.[94
194 112008 | 284064 | 111960 | 140744 | 394720 | 144800 | 181660 | 583208 | 185832
d=2
» The pI’OpOSCd memory 22077k | 43196k | 13226k | 34448k | 61533k | 21458k | 53854k | 85741k | 36097k
This work
optimizations enables the 111360 | 283424 | 111312 | 140096 | 394080 | 144112 | 181120 | 574328 | 185184
46043k | 85151k | 21849k | 68019k | 108992k | 35859k - - -
L3 L3
- Ref.[94
praetlcal use Of hlgh Ol'del' (o4 164328 | 377292 | 111944 | 201180 | 504332 | 144800 - - -
d—=14
Raccoon, namely Raccoon- r | 2SS0k 0052k | 18226k | 42113k | GTAGHK | 21400k | G766k | 216313k | 36194k
1S Wor
. 164352 | 262143 | 111312 | 201172 | 504324 | 144152 | 192956 | 381444 | 185184
128 with d = 16, Raccoon-
111445k | 199892k | 21852k - - - - - -
: — Ref.[94
192 Wlth d = 8, and Raccoon- 194) 262636 | 299007 | 111960 - . - . . :
. d=28
256 Wlth d — 4 8 on the 76364k | 120326k | 13226k | 105337k | 295197k | 21447k | 150611k | 969455k | 36193k
) This work
12636 HHT6(: 36 He : 96 5046 H1¢
1 t d 1 t f 262636 | 557604 | 111312 | 266848 | 488072 | 144152 | 344696 | 504648 | 185192
SClcClica platrorm.
Ref.[94]
d =16
100786k | 436475k | 13284k
This work
426492 | 611648 | 111320

“The first row of each entry indicates the cycle count and the second row refers to stack usage.

Conclusions and Publications

' 5.1 Conclusions
' 5.2 Publications

ol

@ D 2005 G @

21©

5.1 Conclusions NS

 Theoretical improvements: Improved Plantard Arithmetic
» We proposed an improved Plantard arithmetic tailored for LBC.

» It has excellent merits over the original Plantard, Montgomery, and Barrett arithmetic.

] Implementation improvements: Efficient, lightweight and secure LBC
» We explored various optimizations for the improved Plantard arithmetic, NTT,
Keccak, Kyber, NTTRU, Dilithium and side-channel secure masking-friendly
Raccoon implementation on three IoT devices.
» All implementations are open-source and some of them have been merged into the
NIST’s official repository pqm4.
» https://github.com/UIC-ESLAS/ImprovedPlantard Arithmetic
> https://github.com/UIC-ESLAS/Kyber RV_M3
> https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli

> https://github.com/JunhaoHuang/pgm4

https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic
https://github.com/UIC-ESLAS/Kyber_RV_M3
https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/JunhaoHuang/pqm4

5.2 Publications TS

[1] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung, Cetin Kaya Kog,
Donglong Chen*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IJACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4).
(CCF-B & Top-tier Conference in Cryptographic Engineering)

[2] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin
Kaya Koc, Donglong Chen*. Yet another Improvement of Plantard Arithmetic for Faster Kyber on
Low-end 32-bit IoT Devices[J]. IEEE Transactions on Information Forensics & Security (TIFS),
2024. (CCF-A & Top-tier Journal in Security)

[3] Junhao Huang, Alexandre Adomnicai, Jipeng Zhang, Wangchen Dai, Yao Liu, Ray CC Cheung,
Cetin Kaya Koc, Donglong Chen*. Revisiting Keccak and Dilithium Implementations on ARMv7-M.
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2024, 2024(2).
(CCF-B & Top-tier Conference in Cryptographic Engineering)

[4] Junhao Huang, Jipeng Zhang, Weijia Wang, Xuan Yu, Donglong Chen, Efficient High-order
Masking Raccoon on Memory Constrained Devices[J]. (In Submission)

o ole,
5.2 Publications B

[5] Jipeng Zhang, Junhao Huang, Lirui Zhao, Donglong Chen, Cetin Kaya Koc, ENG25519: Faster
TLS 1.3 handshake using optimized X25519 and Ed25519[C], Usenix Security, 2024.

(CCF-A & Top-tier Conference in Security)

[6] Haosong Zhao, Junhao Huang, Zihang Chen, Kunxiong Zhu, Donglong Chen, Zhuoran Ji,
Hongyuan Liu, VESTA: A Secure and Efficient FHE-based Three-Party Vectorized Evaluation System
for Tree Aggregation Models[C], ACM SIGMETRICS, 2025.

(CCF-B Flagship Conference in SIGMETRICS Community)

[7] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li,Hao Zhang, Guangyan Li,
Donglong Chen, Ray CC Cheung, Kejie Huang, PQNTRU: Acceleration of NTRU-based Schemes via
Customized Post-Quantum Processor[J], IEEE Transactions on Computers (TC), 2025.

(CCF-A Flagship Journal)

[8] Jipeng Zhang, Yuxing Yan, Junhao Huang, Cetin Kaya Koc*. Optimized Software
Implementation of Keccak, Kyber, and Dilithium on RV {32,64}-IM{B} {V}[J]. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2025, 2025(1).

(CCF-B & Top-tier Conference in Cryptographic Engineering)

.%!ﬂ;. TS B2 AS RS

l BELING NORMAL-HONG KONG BAPTIST UNIVERSITY '
e
([]

Thanks for listening!
Look forward to interesting

questions and discussions!

	幻灯片编号 1
	Outline
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56

