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1.1.1 Quantum Computers

Quantum computers are being developed rapidly. Shor’s algorithm in quantum 
computers would break the existing public-key cryptosystem (PKC) in polynomial time.

This prompted the cryptographic community to search for suitable alternatives to 
traditional PKC.

2021: 66b Zuchongzhi;
2021: IBM’s 126b Eagle;

2022: IBM’s 433b Osprey.
2024: Google’s Willow

5min vs 𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 years

RSA

ElGamal

ECC

Protocols
DNS, TLS, SSH...

Browsers
Chrome, Safari, 

Edge…

Messaging
WhatsApp, 
Facebook, 
Wechat…

Threat
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1.1.2 Post-quantum Cryptography

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the
post-quantum cryptographic algorithms (PQC).  Chinese ICCS started to call for 
commercial PQC standardization in 2025 [1].

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of 
security and efficiency. Therefore, we will focus on LBC.

Round Round 3 Round 4

Types KEM DSA KEM DSA

Schemes

Kyber Dilithium Kyber
(ML-KEM)

Dilithium
(ML-DSA)

Saber Falcon - Falcon
(FN-DSA)

NTRU Rainbow - Sphincs+
(SLH-DSA)

Classic 
McEliece - - -

Table 1: Round 3 and Round 4 NIST PQC finalists

[1] https://www.niccs.org.cn/

https://www.niccs.org.cn/
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1.1.3 Internet of Things

The Internet of Things (IoT) is pervasive in many aspects of modern life, such as smart 
healthcare, smart transportation, industrial IoT, smart tourism, and wearable technology.

Internet 
of Things

Smart
Home

Wearable 
Device

Smart 
Transportation

Industrial
IoT

Smart 
door lock

Home 
security

Multi-screen 
linkage

Home 
control

Smart 
glasses

Smart
watch

Smart
bracelet

Electronic 
police

Traffic 
control

Industrial 
robot

Intelligent 
production

Smart 
manufacture

Smart 
Helthcare

Medicine

Smart
Tourism

Others

Special
Application

Crowd 
monitoringSafety 

precaution
Self

guided 
tour

Mobile 
payment

Electronic 
IoT

Safety 
Traceability

Agricultural
IoT

Water
monitoring

Soil monitoring

VR
Disease 

prevention
Mobile 
medical

Internet of 
Vehicles

Online
map

Smog 
monitoring

Table 2: Number of Internet of Things (IoT) connected 
devices worldwide (billion) from 2019 to 2021

It requires huge effort to protect billions of IoT devices from the threat of quantum computing.
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1.1.4 PQC on the IoT: Challenges

The IoT devices are distinct from the traditional CPUs.

Challenges: explore the efficient, lightweight and secure LBC implementation tailored 
for heterogeneous IoT devices.
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1.2.1 Lattice-based Cryptography

Lattice-based cryptography relies on the computational difficulty of lattice:

ℒ 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 = {�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖 , 𝑥𝑥𝑖𝑖 ∈ ℤ}

, where 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 are basis vectors. The lattice can be expressed as the sum of 𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖.

The hardness of two LBC finalists Kyber and Dilithium are based on the MLWE and 
MSIS problems: 

 Module Short Integer Solution (MSIS): Given an 𝑛𝑛 × 𝑚𝑚 lattice 𝑨𝑨 ∈ ℤ𝑞𝑞𝑛𝑛×𝑚𝑚, find a 
nonzero short integer vector 𝒙𝒙 ∈ ℤ𝑚𝑚 satisfying 𝑨𝑨𝒙𝒙 = 𝟏𝟏 mod 𝑞𝑞.

 Module Learning with Errors (MLWE): Given an 𝑛𝑛 × 𝑚𝑚 lattice 𝑨𝑨 ∈ ℤ𝑞𝑞𝑛𝑛×𝑚𝑚 and a 
randomly generated sample 𝒆𝒆, recover 𝒔𝒔 ∈ ℤ𝑞𝑞𝑛𝑛 from (𝑨𝑨,𝑨𝑨𝑻𝑻𝒔𝒔 + 𝒆𝒆 mod 𝑞𝑞).
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1.2.2 LBC Core Operations and Structure

 Polynomial sampling: SHA-3 (Keccak, 70% of running time) 
 Polynomial multiplication: NTT/INTT (𝑂𝑂(𝑛𝑛𝑙𝑙𝑜𝑜𝑔𝑔𝑛𝑛) & modular arithmetic);
 Matrix-vector product: large memory consumption.

 LBC structure

 Time and memory consuming operations
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1.2.3 Cryptographic Engineering

Cryptography: Theoretical Security Cryptographic Engineering: Practical Security

 Cryptography deployment in real-world devices

Objectives

Implementation Efficiency Implementation SecurityReal-world Constraints

Time-memory trade-off Side-channel secureLow-lantency

Motivations
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1.3.1 Optimizations Overview

Modular Arithmetic

Montgomery 
arithmetic

Barrett 
reduction

Plantard
arithmetic

Specialized 
reduction

Modular multiplication by a constant Modular multiplication/reduction

Polynomial Multiplication

Butterfly 
units

Layer 
merging

Modular reduction 
of coefficients

Lazy 
reduction

NTT Multi-moduli NTT

Memory optimizations & Side-channel protection

Constant-time 
implementation

Masking 
technique

Generation of the 
public matrix

Other main steps 
in LBC protocols

Secret-related operations Matrix-Vector Product

INTT

Protocols
IoT

Devices

Polynomial Sampling

Keccak Permutation

Lazy 
rotation

Memory 
access
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1.3.2 Contributions

The contributions of this thesis are summarized as follows:
1. Improved Plantard arithmetic tailored for LBC. 

 Two improvements for Plantard arithmetic tailored for LBC;
 Two variants of correctness proofs, demonstrating its robustness;
 Excellent merits over the state-of-the-art modular arithmetic.

2. Faster Plantard arithmetic, NTT, Keccak and LBC implementations.
 Faster Plantard arithmetic implementation on IoT platforms;
 Optimized 16-bit NTT and multi-moduli NTT implementations with 

Plantard arithmetic;
 Optimized Keccak permutation on the 32-bit ARMv7-M (over 20% 

speedups); 
 State-of-the-art Kyber, NTTRU, and Dilithium implementations on the 

target platforms.
3. Efficient, lightweight and side-channel secure Raccoon implementations. 

 Optimized the multi-moduli NTT of the 32-bit NTTs with Montgomery 
arithmetic;

 Time complexity reduction of the masking gadgets;
 Memory optimizations to enable high-order Raccoon on memory-

constrained IoT devices.

Mathematical
Improvement & 

Efficiency

Implementation 
Efficiency & 

Security

Implementation 
Efficiency & 
Security &

Lightweight

Objective 
Achieved
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Improved Plantard Arithmetic02

2.1 State-of-the-art Modular Arithmetic

2.3 Further Improvement of Plantard Arithmetic

2.2 Improved Plantard Arithmetic

2.4 Another Variant of Plantard Arithmetic

2.5 Comparisons
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2.1.1 State-of-the-art Modular Arithmetic

Both Montgomery (1985) and Barrett multiplication (1986) for 𝑙𝑙-bit modulus (𝑙𝑙 = 16 or 32):
 need 3 multiplications;
 use the product 𝑐𝑐 = 𝑎𝑎 × 𝑏𝑏 twice;
 support signed inputs in a large domain, which enable a lazy reduction strategy

 State-of-the-art modular arithmetic, i.e., 𝒂𝒂 × 𝒃𝒃 % 𝒒𝒒
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2.1.2 Original Plantard Arithmetic

Plantard multiplication:
Pros:
 When one of the operands (𝒃𝒃) is fixed, it is one multiplication fewer than 

Montgomery arithmetic. (Suitable for NTT computation!)
Cons:
 Introduces an 𝑙𝑙 × 2𝑙𝑙-bit multiplication 𝑏𝑏𝑞𝑞𝑏. (Only suitable on specific platforms)
 only supports unsigned integers in a small domain 𝟏𝟏,𝒒𝒒 . (How to support signed 

integers in a larger input range?)

 Plantard’s seminal word-size modular arithmetic

// 𝒂𝒂 𝒍𝒍 ← 𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎 𝟐𝟐𝒍𝒍, 𝒂𝒂 𝒍𝒍 ← 𝒂𝒂 ≫ 𝒍𝒍,
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2.2 Improved Plantard Arithmetic

 Tailored for LBC word size moduli: proposed a new modulus restriction 𝒒𝒒 < 𝟐𝟐𝒍𝒍−𝜶𝜶−𝟏𝟏
by introducing a small integer 𝛼𝛼 > 0; provided two versions of correctness proof.
 Following the proof of the original Plantard arithmetic paper.
 The CRT interpretation from Prof. Guangwu Xu[2].

 Larger input range: from unsigned integers [0, 𝑞𝑞] to signed integers in [−𝒒𝒒𝟐𝟐𝜶𝜶,𝒒𝒒𝟐𝟐𝜶𝜶];
 Smaller output range: from [𝟏𝟏,𝒒𝒒] signed integer in [−𝒒𝒒+𝟏𝟏

𝟐𝟐
, 𝒒𝒒
𝟐𝟐

);
 Inherent advantage: when 𝑏𝑏 is a constant, it can save one multiplication by 

precomputing b𝑞𝑞′ mod 22l.

 Improved Plantard arithmetic (TCHES2022)

[1] Junhao Huang, Jipeng Zhang, et al*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IACR Transactions on 
Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4): 614-636.
[2] Yanze Yang, Yiran Jia, and Guangwu Xu. On modular algorithms and butterfly operations in number theoretic transform. 
Cryptology ePrint Archive,2024.
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2.3 Further Improvement of Plantard
Arithmetic

 The improved Plantard multiplication 
supports signed inputs in 
−𝑞𝑞2𝛼𝛼 , 𝑞𝑞2𝛼𝛼 ∈ (−2𝑙𝑙−1, 2𝑙𝑙−1), i.e., 

the product of 𝒂𝒂𝒃𝒃 ∈ (−𝟐𝟐𝟐𝟐𝒍𝒍−𝟐𝟐,𝟐𝟐𝟐𝟐𝒍𝒍−𝟐𝟐).

 Further extend the input range to 
𝑎𝑎𝑏𝑏 ∈ [𝑞𝑞2𝑙𝑙 − 𝑞𝑞2𝑙𝑙+𝛼𝛼, 22𝑙𝑙 − 𝑞𝑞2𝑙𝑙+𝛼𝛼). 
(refer the correctness proof to the 
thesis)

 For Kyber, when 𝑏𝑏 is a constant, the 
previous range of 𝒂𝒂 ∈ [−𝟔𝟔𝟔𝟔𝒒𝒒,𝟔𝟔𝟔𝟔𝒒𝒒]. 
After the improvement, the range of 𝑎𝑎
is increased up to 𝒂𝒂 ∈
−𝟏𝟏𝟏𝟏𝟏𝟏𝒒𝒒,𝟐𝟐𝟏𝟏𝟏𝟏𝒒𝒒 , 𝟐𝟐.𝟏𝟏𝟔𝟔 × larger. 

 Plantard arithmetic with larger input range (TIFS2024)

[1] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin Kaya Koc, Donglong Chen*. Yet 
another Improvement of Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices[J]. IEEE Transactions on Information 
Forensics & Security (TIFS), 2024.
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2.4 Another Variant of Plantard Arithmetic

 Daichi et al.[2] concurrently proposed another variant of signed Plantard arithmetic in 
2022. 

 The rounding-to-nearest operations in their version are not architecture-friendly in 
most platforms.

 In one of the coauthored work[1], we manage to replace one rounding-to-nearest with 
one flooring operation, reducing one rounding-to-nearest operation.

Another Variant of signed Plantard arithmetic

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and 
Dilithium on RV{32,64}IM{B}{V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1), 
2025.
[2] Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi Takagi.Efficient Word Size Modular Multiplication over 
Signed Integers. In 29th IEEESymposium on Computer Arithmetic, ARITH 2022, Lyon, France, September12-14, 2022, pages 94–
101. IEEE, 2022.
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2.5 Comparisons

 Efficiency: Plantard multiplication is one multiplication faster than the state-of-the-art 
Montgomery and Barrett multiplication when 𝒃𝒃 is a constant.

 Input range: [𝒒𝒒𝟐𝟐𝒍𝒍 − 𝒒𝒒𝟐𝟐𝒍𝒍+𝜶𝜶,𝟐𝟐𝟐𝟐𝒍𝒍 − 𝒒𝒒𝟐𝟐𝒍𝒍+𝜶𝜶) vs [−𝒒𝒒𝟐𝟐𝒍𝒍−𝟏𝟏,𝒒𝒒𝟐𝟐𝒍𝒍−𝟏𝟏] for 𝛼𝛼 ≥ 0, at least 𝟐𝟐𝜶𝜶+𝟏𝟏
times bigger than Montgomery’s;

 Output range: [−𝒒𝒒+𝟏𝟏
𝟐𝟐

, 𝒒𝒒
𝟐𝟐

) vs (−𝒒𝒒,𝒒𝒒), only half of the Montgomery’s

 Excellent merits over the state-of-the-art

With all these merits, how to efficiently turn the theoretical improvement into actual 
improvements is the remaining question.
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Efficient LBC on IoT Devices03

3.1 Target Schemes and Platforms

3.4 Optimized Dilithium’s NTT on Cortex-M3

3.3 Optimized 16-bit NTT Implementation

3.5 Efficient Polynomial Sampling: Keccak

3.6 Results and Comparisons

3.2 Faster Plantard Arithmetic
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3.1.1 Target Schemes

 The only KEM scheme to be standardized.
 Module-LWE problem (𝑨𝑨,𝒃𝒃 = 𝑨𝑨𝑻𝑻𝒔𝒔 + 𝒆𝒆).
 Parameters: 𝑛𝑛 = 256,𝒒𝒒 = 𝟏𝟏𝟏𝟏𝟐𝟐𝟑𝟑 < 𝟐𝟐𝟏𝟏𝟐𝟐,𝑘𝑘 = 2,3,4,𝑍𝑍3329[𝑋𝑋]/(𝑋𝑋256 + 1).

 Kyber

 An NTT-friendly variant of NTRU KEM scheme proposed in TCHES2019.
 The KeyGen, Encaps and Decaps are 30 ×, 5 ×, and 8 × faster than the respective 

procedures in the NTRU schemes.
 Parameters: 𝒏𝒏 = 𝟏𝟏𝟔𝟔𝟕𝟕,𝒒𝒒 = 𝟏𝟏𝟔𝟔𝟕𝟕𝟏𝟏,𝑍𝑍7681[𝑋𝑋] /(𝑋𝑋768 − 𝑋𝑋384 + 1). 

 One out of three final DSA to be standardized.
 Module-LWE problem and Module-SIS problem.
 Parameters: 𝒏𝒏 = 𝟐𝟐𝟐𝟐𝟔𝟔,𝒒𝒒 = 𝟕𝟕𝟏𝟏𝟕𝟕𝟏𝟏𝟔𝟔𝟏𝟏𝟏𝟏 < 𝟐𝟐𝟐𝟐𝟏𝟏,𝑍𝑍8380417[𝑋𝑋] /(𝑋𝑋256 + 1). 

 NTTRU

 Dilithium
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3.1.2 Target Platforms

ARM Cortex-M4: Relative high power, resource and memory IoT platform

 NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupq/pqm4);

 1MB flash, 192KB RAM;

 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

 SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction 

for two packed 16-bit vectors; 

 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

 Relative expensive load/store instructions: ldr, ldrd, vldm.

 To utilize the efficient SIMD instructions on Cortex-M4, the size of the coefficients is 

limited to 16-bit signed integer.

https://github.com/mupq/pqm4
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3.1.2 Target Platforms

ARM Cortex-M3: Low resource IoT platform

 14 32-bit usable general-purpose registers, no floating-point registers;

 Non-constant time full multiplication instructions: umull, smull, umlal and small; No 

SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

 Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the 

addition and shifting operations in 1 instruction.

 512KB flash, 96KB RAM;

 SiFive Freedom RISC-V: Extremely low resource and memory IoT platform

 Open-source ISA;

 Only 16KB RAM;

 30 32-bit usable general-purpose registers, no floating-point registers;

 No SIMD extensions and limited multiplication instructions: mul, mulh (5-cycle);



24

3.1.3 Polynomial multiplications

 Both Kyber and NTTRU use 16-bit NTT for polynomial multiplication. 
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) implemented with NTT factors the large-degree 

polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like 𝑋𝑋2 − 𝑟𝑟 and (𝑋𝑋3 ± 𝑟𝑟) for Kyber and 
NTTRU, respectively.

 Dilithium normally uses 32-bit NTT for polynomial multiplication. 
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) of Dilithium implemented with 32-bit NTT factors the 

large-degree polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like (𝑋𝑋 − 𝑟𝑟) for Dilithium.

 16-bit NTT

 32-bit NTT

Modular multiplication with the twiddle factors can be speeded up with Plantard arithmetic. 
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3.2.1 Faster 16-bit Plantard Arithmetic on 
Cortex-M4
 Faster Plantard multiplication by a constant on Cortex-M4
 The Plantard multiplication by a constant (𝒃𝒃 is a constant) saves one multiplication 𝒃𝒃𝒒𝒒𝒃

by precomputing 𝒃𝒃𝒒𝒒𝒃 𝒎𝒎𝒎𝒎𝒎𝒎± 𝟐𝟐𝟐𝟐𝒍𝒍.
 The 16×32-bit multiplication 𝑎𝑎𝑏𝑏𝑞𝑞𝑏 is then implemented with smulwb instruction. The rest 

of the computations can be simply implemented with one smlabb instruction.
 The Plantard multiplication by a constant on Cortex-M4 is 1-instruction faster than the 

state-of-the-art Montgomery’s.
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3.2.2 Faster 16-bit Plantard Arithmetic on 
Cortex-M3 and RISC-V
 Faster Plantard multiplication by a constant on Cortex-M3 and RISC-V
 Cortex-M3: We can merge the addition and shift operation using the barrel shifter 

operation as in Step 3 of Algorithm 4.
 RISC-V: We can use muh with 𝑞𝑞2𝑙𝑙 to merge the mul and asr operation in the final two 

steps of Algorithm 4. 
 Both implementations are 1-multiplication faster than the Montgomery’s.
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3.2.3 Faster 16-bit/32-bit Plantard
Arithmetic on Other Platforms
 Faster 32-bit Plantard multiplication by a constant on 64-bit RISC-V
 The 32-bit Plantard arithmetic can be extended to 64-bit RISC-V. The instruction sequences 

are the same as the 16-bit Plantard arithmetic on 32-bit RISC-V [1,2].
 Faster 16-bit Plantard multiplication by a constant on customized RISC-V
 Customized SIMD instruction (asravi) for Plantard arithmetic. Two instructions faster 

than the Montgomery arithmetic on the same platform [3].

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and 
Dilithium on RV{32,64}IM{B}{V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1), 2025.
[2] Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao,and Jingqiang Lin. Eco-crystals: Efficient 
cryptography crystals on standard risc-v isa. IEEE Transactions on Computers, pages 1–13, 2024.
[3] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang,Guangyan Li, Donglong Chen, Ray C. C. Cheung, and 
Kejie Huang. PQN-TRU: acceleration of ntru-based schemes via customized post-quantum processor. IEEE Transactions on Computers, 
2025.
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3.3.1 Optimized 16-bit NTT Implementation

 Optimizations summary

Efficient Plantard
multiplication by a 

constant

Faster butterfly 
units

Adequate floating-
point registers

4-layer merging 
strategy

Large input range
small output range 

Better lazy 
reduction strategy

Efficient Plantard
reduction

Faster modular 
reduction of 
coefficients

Reducing 
𝑵𝑵 ⋅ 𝒍𝒍𝒎𝒎𝒍𝒍 𝑵𝑵

multiplication 
instructions

Reducing a 
number of 

memory access 
instructions

Minimizing the 
modular reduction 
for polynomial in 

NTT/INTT

Reducing N
multiplication 
instructions for 

each polynomial

The proposed improved Plantard arithmetic make it possible to replace previous state-of-
the-art Montgomery arithmetic in the NTT implementation on Cortex-M4, Cortex-M3, 
RISC-V and etc, further improving the performance of LBC.
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3.3.2 The 16-bit NTT Results

 The 16-bit NTT results on Cortex-M4
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3.3.2 The 16-bit NTT Results

 The 16-bit NTT results on Cortex-M3 and RISC-V
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 16-bit NTT vs 32-bit NTT on Cortex-M3

 Cortex-M3 does not have constant-time full multiplication, which may lead to 
insecure 32-bit modular multiplication implementation (side-channel attack).

 The constant-time 32-bit modular multiplication takes 6-8 instructions.
 The constant-time 32-bit CT butterfly takes 19 instructions, compared to 5 

instructions for 16-bit CT butterfly;
 The 16-bit NTT is at least 𝟐𝟐~𝟏𝟏 × faster than 32-bit NTT on Cortex-M3 [1].

3.4.1 16-bit NTT vs 32-bit NTT

[1] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-pact Dilithium implementations on Cortex-
M3 and Cortex-M4. IACR Trans.Cryptogr. Hardw. Embed. Syst., 2021(1):1–24, 2021.



32

3.4.2 Polynomial multiplication of Dilithium
 Small polynomial multiplications: 𝒄𝒄𝒔𝒔𝒊𝒊, 𝒄𝒄𝒕𝒕𝒊𝒊
 In Dilithium signature generation and verification, there exists a small polynomial 𝒄𝒄 with 

at most 𝝉𝝉 nonzero coefficients (±𝟏𝟏) and the rest of coefficients are 0. 
 The coefficient range of 𝒔𝒔𝒊𝒊 is [−𝜂𝜂, 𝜂𝜂], then the coefficients of the product 𝑐𝑐𝒔𝒔𝒊𝒊 are smaller 

than 𝜷𝜷 = 𝝉𝝉 · 𝜼𝜼 (smaller than 16-bit).
 The coefficient range of 𝒕𝒕𝒊𝒊 is smaller than 212 or 210, then the coefficients of the product 

𝑐𝑐𝒕𝒕𝒊𝒊 are smaller than 𝜷𝜷𝑏 = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟐𝟐 or 𝜷𝜷𝑏 = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟏𝟏 (bigger than 16-bit).
 According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be 

treated as multiplications over 𝑍𝑍𝑞𝑞′ 𝑋𝑋 /(𝑋𝑋𝑛𝑛 + 1) with a well-selected modulus 𝑞𝑞𝑏 > 2𝛽𝛽
or 𝑞𝑞𝑏 > 2𝛽𝛽𝑏. In sum, we can use 16-bit NTT for 𝑐𝑐𝒔𝒔𝒊𝒊 and 32-bit NTT for 𝑐𝑐𝒕𝒕𝒊𝒊.
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3.4.3 Proposed 𝑐𝑐𝒔𝒔𝒊𝒊, 𝑐𝑐𝒕𝒕𝒊𝒊 Implementations on 
Cortex-M3
 16-bit NTT over 769 for 𝑐𝑐𝒔𝒔𝒊𝒊
 The coefficient range of 𝑠𝑠𝑖𝑖 is [−𝜂𝜂, 𝜂𝜂], then the coefficients of the product 𝑐𝑐𝒔𝒔𝒊𝒊 are smaller 

than 𝜷𝜷 = 𝝉𝝉 · 𝜼𝜼 =78, 196 and 120 for three security levels. [AHKS22] used FNT over 
257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

 On Cortex-M3: We optimize the 16-bit NTT over 769 with Plantard arithmetic for all 
Dilithium variants, because we can then combine it with multi-moduli NTT.

Multi-moduli NTT with two 16-bit NTTs for 𝑐𝑐𝒕𝒕𝒊𝒊
 The coefficient range of 𝑡𝑡𝑖𝑖 is 212 or 210, then the coefficients of the product 𝑐𝑐𝑡𝑡𝑖𝑖 are 

smaller than 𝜷𝜷′ = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟐𝟐 = 𝟐𝟐𝟔𝟔𝟐𝟐𝟏𝟏𝟔𝟔𝟏𝟏,𝒒𝒒𝑏 > 𝟐𝟐𝜷𝜷𝑏 = 𝟔𝟔𝟑𝟑𝟏𝟏𝟐𝟐𝟐𝟐𝟏𝟏. We choose a composite 
modulus 𝑞𝑞𝑏 = 769 × 3329 = 2560001 and perform NTT computations over 
𝑍𝑍𝑞𝑞′[𝑋𝑋]/(𝑋𝑋𝑛𝑛 + 1).

 On Cortex-M3: We optimize 𝑐𝑐𝒕𝒕𝒊𝒊 with the multi-moduli NTT over the 𝒒𝒒′ = 𝟏𝟏𝟔𝟔𝟑𝟑 ×
𝟏𝟏𝟏𝟏𝟐𝟐𝟑𝟑 for all three Dilithium variants and separately optimize the 16-bit NTT over 769 
and 3329 with Plantard arithmetic.
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Multi-moduli NTTs for 𝒄𝒄𝒕𝒕𝒊𝒊 on Cortex-M3

3.4.4 Multi-moduli NTTs for 𝑐𝑐𝒕𝒕𝒊𝒊



35

3.4.5 Dilithium’s NTT Results

 Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on 
Cortex-M3 are 4.22×, 4.29×, and 2.14× faster than the constant-time 32-bit NTT, 
INTT, and pointwise multiplication, respectively. Compared to the 32-bit variable-time 
NTT, INTT, and pointwise multiplication, the speed ups are 2.48×, 2.46×, and 1.24×, 
respectively.

 The proposed multi-moduli NTT, INTT and pointwise multiplication
implementations yield 52.76% ∼ 54.76% performance improvements compared to the 
constant-time 32-bit NTT. And over 19.47% and 19.07% speed-ups compared with the 
variable-time 32-bit NTT and INTT.

 The 16-bit NTT and multi-moduli NTT results on Cortex-M3
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3.5.1 Efficient Polynomial Sampling: Keccak
 Pipelining memory access

 Lazy rotations
 Utilize the inline barrel shifter instruction on ARMv7-M to merge the xor and ror

instructions, which could help to reduce some cycles.
 We proposed two variants of Keccak implementation considering the code size effect. 

One has better performance but requiring larger code size. And one has smaller code 
size and an acceptable performance.
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3.5.2 Keccak Results

 Keccak results on Cortex-M3 and M4

 Combining the pipelining memory access and lazy rotations techniques, we achieve 
up to 24.78% and 21.4% performance boosts on Cortex-M3 and M4, respectively
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3.6 LBC Results: Kyber and NTTRU

 Kyber and NTTRU results on Cortex-M4 without Keccak optimization

3%

55%
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3.6 LBC Results: Kyber

 Kyber results on Cortex-M3 and RISC-V without Keccak optimization

5%

30%

31%
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3.6 LBC Results: Dilithium

 Kyber and Dilithium results on Cortex-M3/4 with Keccak optimization

15%

15%
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Efficient Side-Channel Secure 

LBC on IoT Devices
04

4.1 Target Schemes and Platforms

4.2 Optimized Polynomial Multiplication 

4.3 Lightweight High-order Raccoon

4.4 Results and Comparisons
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4.1.1 Target Scheme: Raccoon

 Raccoon: low-complexity masking-friendly O(𝒎𝒎⋅𝐥𝐥𝐨𝐨𝐠𝐠 𝒎𝒎), side-channel secure LBC 
scheme.

 Masking gadgets: Complex masking gadgets to secure against side-channel attacks. 
(Efficient masking gadgets)

 Hardness: Module-LWE and Module-SIS, similarly to the NIST standard Dilithium.

 Polynomial multiplication: 𝑛𝑛 = 512, q = 𝑞𝑞1 ⋅ 𝑞𝑞2 < 249, 𝑞𝑞1 = 224 − 218 + 1, 𝑞𝑞2 = 225 −
218 + 1,𝑍𝑍𝑞𝑞[𝑋𝑋]/(𝑋𝑋512 + 1). (Efficient 49-bit NTT implementation)

 Memory consumption: At high masking orders, memory consumption becomes the the
major bottleneck for its deployment on IoT devices. (Lightweight implementation of 
high-order Raccoon)

 Raccoon – Side-channel secure LBC scheme
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4.1.2 Target Platforms

ARM Cortex-M4: Relative high power, resource and memory IoT platform

 NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupq/pqm4);

 1MB flash, 192KB RAM;

 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

 SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction 

for two packed 16-bit vectors; 

 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

 Relative expensive load/store instructions: ldr, ldrd, vldm.

 New instructions involved:  smmla, smmls, smlal.

https://github.com/mupq/pqm4
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4.1.3 Polynomial multiplication

 Raccoon use a 64-bit NTT over a composite modulus 𝒒𝒒 for polynomial multiplication. 
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) implemented with NTT factors the large-degree 

polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like 𝑋𝑋 − 𝑟𝑟 .

 Using the CRT theorem, the 64-bit NTT can be split into two 32bit NTT over two 32-
bit moduli 𝒒𝒒𝟏𝟏 and 𝒒𝒒𝟐𝟐, which is more friendly on 32-bit platforms. The overall process is 
as follows:
 Polynomial splitting: Two  consecutive  modular  reductions  are required to reduce 

the 64-bit polynomial coefficients modulo 32-bit 𝑞𝑞1 and 𝑞𝑞2.
 NTT operations: Two 32-bit NTTs, pointwise multiplications and INTTs over 𝑞𝑞1

and 𝑞𝑞2.
 Reconstruction using CRT: Combine the 32-bit results modulo 𝑞𝑞1 and 𝑞𝑞2 into 64-

bit results using the CRT theorem.

 64-bit NTT

Multi-moduli NTT of 32-bit NTTs (more friendly on 32-bit IoT platforms)
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4.2.1 Optimized Polynomial Multiplication

 Polynomial splitting
 Two variants of Montgomery arithmetic: depending on whether −𝒒𝒒𝑏 or 𝒒𝒒𝑏 is used;
 State-of-the-art Montgomery arithmetic (2-cycle) on Cortex-M4 use −𝒒𝒒𝑏; Not appropriate 

for in-place two consecutive modular reductions (Need at least 7 cycles).
 We used 𝒒𝒒𝑏 instead and proposed a 2-instruction faster negative double Montgomery 

reductions using the smmla instructions. (Produce the negative of the correct results)
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4.2.1 Optimized Polynomial Multiplication

 NTT for negative polynomials
 The proposed negative double Montgomery reductions produce negative of the correct 

results. 
 The linearity of NTT computations ensures that NTT(-𝒙𝒙)=-NTT(𝒙𝒙). Therefore, it will not 

affect the correctness of the NTT computations. 

 The optimized 32-bit NTT/INTT implementations

 The 3+3+3 layer merging strategy is used for the 9-layer NTT in Raccoon.
 Lazy reduction is comprehensively used to reduce unnecessary modular reductions. 

Only INTT with CT butterfly needs modular reductions for 64 coefficients modulo 
𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐.
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4.2.2 Optimized Raccoon Masking Gadgets

 Lazy reduction for Raccoon’s masking gadgets
 We thoroughly reduce the conditional additions/subtractions in Raccoon masking 

gadgets: ZeroEncoding, Refresh, AddRepNoise, and Decode.
 We carefully analyze the output range of these gadgets and ensure a correct Raccoon 

implementation. 
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4.3 Lightweight High-order Raccoon

 Streaming the matrix-vector multiplication
 Streaming the matrix A: save 80 KiB, 140 KiB, and 252 KiB of memory for Raccoon-

128, Raccoon-192, and Raccoon-256.
 Streaming the masked vector 𝑟𝑟 : reduce 𝟔𝟔(𝒍𝒍 − 𝟏𝟏)𝒎𝒎 KiB of memory.
 Other memory reuses: reduce 𝟕𝟕𝟖𝟖 + 𝟔𝟔𝒍𝒍KiB of memory.
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4.3.1 Results and Comparisons

 Polynomial arithmetic results on Cortex-M4
 The NTT and INTT are 𝟐𝟐.𝟐𝟐𝟔𝟔 × and 𝟏𝟏.𝟑𝟑𝟕𝟕 × faster than the reference implementation.
 The polynomial left- and right-shift are 𝟏𝟏.𝟐𝟐𝟐𝟐 × and 2.93× faster.
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4.3.1 Results and Comparisons

Masking gadgets results on Cortex-M4 
 The lazy reduction strategy in the masking gadgets results in 𝟏𝟏.𝟏𝟏𝟕𝟕 × to 2.61×

speedups, which further improve the performance of Raccoon.



51

4.3.1 Results and Comparisons

 Raccoon results on Cortex-M4

 The proposed implementations 
reduce 32.46%∼40.01% of 
the clock cycles compared to 
Raccoon’s reference 
implementation.

 The proposed memory 
optimizations enables the 
practical use of high-order 
Raccoon, namely Raccoon-
128 with 𝑑𝑑 = 16, Raccoon-
192 with 𝑑𝑑 = 8, and Raccoon-
256 with 𝑑𝑑 = 4,8 on the 
selected platform.
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Conclusions and Publications05

5.1 Conclusions

5.2 Publications
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5.1 Conclusions

 We proposed an improved Plantard arithmetic tailored for LBC.

 It has excellent merits over the original Plantard, Montgomery, and Barrett arithmetic.

 Theoretical improvements: Improved Plantard Arithmetic

 We explored various optimizations for the improved Plantard arithmetic, NTT, 

Keccak, Kyber, NTTRU, Dilithium and side-channel secure masking-friendly 

Raccoon implementation on three IoT devices.

 All implementations are open-source and some of them have been merged into the 

NIST’s official repository pqm4.

 https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic

 https://github.com/UIC-ESLAS/Kyber_RV_M3

 https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli

 https://github.com/JunhaoHuang/pqm4

 Implementation improvements: Efficient, lightweight and secure LBC

https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic
https://github.com/UIC-ESLAS/Kyber_RV_M3
https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/JunhaoHuang/pqm4
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Thanks for listening!

Look forward to interesting 

questions and discussions!
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