
PhD Candidate: Junhao HUANG (黄军浩)
Supervisor: Dr. Donglong CHEN

03/06/2025

1

On Modular Arithmetic and Polynomial
Multiplication in Lattice-based

Cryptography
-- Doctoral Defense for the PhD of HKBU

Outline

2

Introduction01

Improved Plantard Arithmetic02

Conclusions05

Efficient LBC on IoT Devices03

Efficient Side-Channel Secure
LBC on IoT Devices04

3

Introduction01

1.1 Background

1.2 Lattice-based Cryptography

1.3 Contributions

Shor

4

1.1.1 Quantum Computers

Quantum computers are being developed rapidly. Shor’s algorithm in quantum
computers would break the existing public-key cryptosystem (PKC) in polynomial time.

This prompted the cryptographic community to search for suitable alternatives to
traditional PKC.

2021: 66b Zuchongzhi;
2021: IBM’s 126b Eagle;

2022: IBM’s 433b Osprey.
2024: Google’s Willow

5min vs 𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 years

RSA

ElGamal

ECC

Protocols
DNS, TLS, SSH...

Browsers
Chrome, Safari,

Edge…

Messaging
WhatsApp,
Facebook,
Wechat…

Threat

5

1.1.2 Post-quantum Cryptography

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the
post-quantum cryptographic algorithms (PQC). Chinese ICCS started to call for
commercial PQC standardization in 2025 [1].

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of
security and efficiency. Therefore, we will focus on LBC.

Round Round 3 Round 4

Types KEM DSA KEM DSA

Schemes

Kyber Dilithium Kyber
(ML-KEM)

Dilithium
(ML-DSA)

Saber Falcon - Falcon
(FN-DSA)

NTRU Rainbow - Sphincs+
(SLH-DSA)

Classic
McEliece - - -

Table 1: Round 3 and Round 4 NIST PQC finalists

[1] https://www.niccs.org.cn/

https://www.niccs.org.cn/

6

1.1.3 Internet of Things

The Internet of Things (IoT) is pervasive in many aspects of modern life, such as smart
healthcare, smart transportation, industrial IoT, smart tourism, and wearable technology.

Internet
of Things

Smart
Home

Wearable
Device

Smart
Transportation

Industrial
IoT

Smart
door lock

Home
security

Multi-screen
linkage

Home
control

Smart
glasses

Smart
watch

Smart
bracelet

Electronic
police

Traffic
control

Industrial
robot

Intelligent
production

Smart
manufacture

Smart
Helthcare

Medicine

Smart
Tourism

Others

Special
Application

Crowd
monitoringSafety

precaution
Self

guided
tour

Mobile
payment

Electronic
IoT

Safety
Traceability

Agricultural
IoT

Water
monitoring

Soil monitoring

VR
Disease

prevention
Mobile
medical

Internet of
Vehicles

Online
map

Smog
monitoring

Table 2: Number of Internet of Things (IoT) connected
devices worldwide (billion) from 2019 to 2021

It requires huge effort to protect billions of IoT devices from the threat of quantum computing.

7

1.1.4 PQC on the IoT: Challenges

The IoT devices are distinct from the traditional CPUs.

Challenges: explore the efficient, lightweight and secure LBC implementation tailored
for heterogeneous IoT devices.

8

1.2.1 Lattice-based Cryptography

Lattice-based cryptography relies on the computational difficulty of lattice:

ℒ 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 = {�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖 , 𝑥𝑥𝑖𝑖 ∈ ℤ}

, where 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 are basis vectors. The lattice can be expressed as the sum of 𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖.

The hardness of two LBC finalists Kyber and Dilithium are based on the MLWE and
MSIS problems:

 Module Short Integer Solution (MSIS): Given an 𝑛𝑛 × 𝑚𝑚 lattice 𝑨𝑨 ∈ ℤ𝑞𝑞𝑛𝑛×𝑚𝑚, find a
nonzero short integer vector 𝒙𝒙 ∈ ℤ𝑚𝑚 satisfying 𝑨𝑨𝒙𝒙 = 𝟏𝟏 mod 𝑞𝑞.

 Module Learning with Errors (MLWE): Given an 𝑛𝑛 × 𝑚𝑚 lattice 𝑨𝑨 ∈ ℤ𝑞𝑞𝑛𝑛×𝑚𝑚 and a
randomly generated sample 𝒆𝒆, recover 𝒔𝒔 ∈ ℤ𝑞𝑞𝑛𝑛 from (𝑨𝑨,𝑨𝑨𝑻𝑻𝒔𝒔 + 𝒆𝒆 mod 𝑞𝑞).

9

1.2.2 LBC Core Operations and Structure

 Polynomial sampling: SHA-3 (Keccak, 70% of running time)
 Polynomial multiplication: NTT/INTT (𝑂𝑂(𝑛𝑛𝑙𝑙𝑜𝑜𝑔𝑔𝑛𝑛) & modular arithmetic);
 Matrix-vector product: large memory consumption.

 LBC structure

 Time and memory consuming operations

10

1.2.3 Cryptographic Engineering

Cryptography: Theoretical Security Cryptographic Engineering: Practical Security

 Cryptography deployment in real-world devices

Objectives

Implementation Efficiency Implementation SecurityReal-world Constraints

Time-memory trade-off Side-channel secureLow-lantency

Motivations

11

1.3.1 Optimizations Overview

Modular Arithmetic

Montgomery
arithmetic

Barrett
reduction

Plantard
arithmetic

Specialized
reduction

Modular multiplication by a constant Modular multiplication/reduction

Polynomial Multiplication

Butterfly
units

Layer
merging

Modular reduction
of coefficients

Lazy
reduction

NTT Multi-moduli NTT

Memory optimizations & Side-channel protection

Constant-time
implementation

Masking
technique

Generation of the
public matrix

Other main steps
in LBC protocols

Secret-related operations Matrix-Vector Product

INTT

Protocols
IoT

Devices

Polynomial Sampling

Keccak Permutation

Lazy
rotation

Memory
access

12

1.3.2 Contributions

The contributions of this thesis are summarized as follows:
1. Improved Plantard arithmetic tailored for LBC.

 Two improvements for Plantard arithmetic tailored for LBC;
 Two variants of correctness proofs, demonstrating its robustness;
 Excellent merits over the state-of-the-art modular arithmetic.

2. Faster Plantard arithmetic, NTT, Keccak and LBC implementations.
 Faster Plantard arithmetic implementation on IoT platforms;
 Optimized 16-bit NTT and multi-moduli NTT implementations with

Plantard arithmetic;
 Optimized Keccak permutation on the 32-bit ARMv7-M (over 20%

speedups);
 State-of-the-art Kyber, NTTRU, and Dilithium implementations on the

target platforms.
3. Efficient, lightweight and side-channel secure Raccoon implementations.

 Optimized the multi-moduli NTT of the 32-bit NTTs with Montgomery
arithmetic;

 Time complexity reduction of the masking gadgets;
 Memory optimizations to enable high-order Raccoon on memory-

constrained IoT devices.

Mathematical
Improvement &

Efficiency

Implementation
Efficiency &

Security

Implementation
Efficiency &
Security &

Lightweight

Objective
Achieved

13

Improved Plantard Arithmetic02

2.1 State-of-the-art Modular Arithmetic

2.3 Further Improvement of Plantard Arithmetic

2.2 Improved Plantard Arithmetic

2.4 Another Variant of Plantard Arithmetic

2.5 Comparisons

14

2.1.1 State-of-the-art Modular Arithmetic

Both Montgomery (1985) and Barrett multiplication (1986) for 𝑙𝑙-bit modulus (𝑙𝑙 = 16 or 32):
 need 3 multiplications;
 use the product 𝑐𝑐 = 𝑎𝑎 × 𝑏𝑏 twice;
 support signed inputs in a large domain, which enable a lazy reduction strategy

 State-of-the-art modular arithmetic, i.e., 𝒂𝒂 × 𝒃𝒃 % 𝒒𝒒

15

2.1.2 Original Plantard Arithmetic

Plantard multiplication:
Pros:
 When one of the operands (𝒃𝒃) is fixed, it is one multiplication fewer than

Montgomery arithmetic. (Suitable for NTT computation!)
Cons:
 Introduces an 𝑙𝑙 × 2𝑙𝑙-bit multiplication 𝑏𝑏𝑞𝑞𝑏. (Only suitable on specific platforms)
 only supports unsigned integers in a small domain 𝟏𝟏,𝒒𝒒 . (How to support signed

integers in a larger input range?)

 Plantard’s seminal word-size modular arithmetic

// 𝒂𝒂 𝒍𝒍 ← 𝒂𝒂𝒎𝒎𝒎𝒎𝒎𝒎 𝟐𝟐𝒍𝒍, 𝒂𝒂 𝒍𝒍 ← 𝒂𝒂 ≫ 𝒍𝒍,

16

2.2 Improved Plantard Arithmetic

 Tailored for LBC word size moduli: proposed a new modulus restriction 𝒒𝒒 < 𝟐𝟐𝒍𝒍−𝜶𝜶−𝟏𝟏
by introducing a small integer 𝛼𝛼 > 0; provided two versions of correctness proof.
 Following the proof of the original Plantard arithmetic paper.
 The CRT interpretation from Prof. Guangwu Xu[2].

 Larger input range: from unsigned integers [0, 𝑞𝑞] to signed integers in [−𝒒𝒒𝟐𝟐𝜶𝜶,𝒒𝒒𝟐𝟐𝜶𝜶];
 Smaller output range: from [𝟏𝟏,𝒒𝒒] signed integer in [−𝒒𝒒+𝟏𝟏

𝟐𝟐
, 𝒒𝒒
𝟐𝟐

);
 Inherent advantage: when 𝑏𝑏 is a constant, it can save one multiplication by

precomputing b𝑞𝑞′ mod 22l.

 Improved Plantard arithmetic (TCHES2022)

[1] Junhao Huang, Jipeng Zhang, et al*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4): 614-636.
[2] Yanze Yang, Yiran Jia, and Guangwu Xu. On modular algorithms and butterfly operations in number theoretic transform.
Cryptology ePrint Archive,2024.

17

2.3 Further Improvement of Plantard
Arithmetic

 The improved Plantard multiplication
supports signed inputs in
−𝑞𝑞2𝛼𝛼 , 𝑞𝑞2𝛼𝛼 ∈ (−2𝑙𝑙−1, 2𝑙𝑙−1), i.e.,

the product of 𝒂𝒂𝒃𝒃 ∈ (−𝟐𝟐𝟐𝟐𝒍𝒍−𝟐𝟐,𝟐𝟐𝟐𝟐𝒍𝒍−𝟐𝟐).

 Further extend the input range to
𝑎𝑎𝑏𝑏 ∈ [𝑞𝑞2𝑙𝑙 − 𝑞𝑞2𝑙𝑙+𝛼𝛼, 22𝑙𝑙 − 𝑞𝑞2𝑙𝑙+𝛼𝛼).
(refer the correctness proof to the
thesis)

 For Kyber, when 𝑏𝑏 is a constant, the
previous range of 𝒂𝒂 ∈ [−𝟔𝟔𝟔𝟔𝒒𝒒,𝟔𝟔𝟔𝟔𝒒𝒒].
After the improvement, the range of 𝑎𝑎
is increased up to 𝒂𝒂 ∈
−𝟏𝟏𝟏𝟏𝟏𝟏𝒒𝒒,𝟐𝟐𝟏𝟏𝟏𝟏𝒒𝒒 , 𝟐𝟐.𝟏𝟏𝟔𝟔 × larger.

 Plantard arithmetic with larger input range (TIFS2024)

[1] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin Kaya Koc, Donglong Chen*. Yet
another Improvement of Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices[J]. IEEE Transactions on Information
Forensics & Security (TIFS), 2024.

18

2.4 Another Variant of Plantard Arithmetic

 Daichi et al.[2] concurrently proposed another variant of signed Plantard arithmetic in
2022.

 The rounding-to-nearest operations in their version are not architecture-friendly in
most platforms.

 In one of the coauthored work[1], we manage to replace one rounding-to-nearest with
one flooring operation, reducing one rounding-to-nearest operation.

Another Variant of signed Plantard arithmetic

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV{32,64}IM{B}{V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1),
2025.
[2] Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi Takagi.Efficient Word Size Modular Multiplication over
Signed Integers. In 29th IEEESymposium on Computer Arithmetic, ARITH 2022, Lyon, France, September12-14, 2022, pages 94–
101. IEEE, 2022.

19

2.5 Comparisons

 Efficiency: Plantard multiplication is one multiplication faster than the state-of-the-art
Montgomery and Barrett multiplication when 𝒃𝒃 is a constant.

 Input range: [𝒒𝒒𝟐𝟐𝒍𝒍 − 𝒒𝒒𝟐𝟐𝒍𝒍+𝜶𝜶,𝟐𝟐𝟐𝟐𝒍𝒍 − 𝒒𝒒𝟐𝟐𝒍𝒍+𝜶𝜶) vs [−𝒒𝒒𝟐𝟐𝒍𝒍−𝟏𝟏,𝒒𝒒𝟐𝟐𝒍𝒍−𝟏𝟏] for 𝛼𝛼 ≥ 0, at least 𝟐𝟐𝜶𝜶+𝟏𝟏
times bigger than Montgomery’s;

 Output range: [−𝒒𝒒+𝟏𝟏
𝟐𝟐

, 𝒒𝒒
𝟐𝟐

) vs (−𝒒𝒒,𝒒𝒒), only half of the Montgomery’s

 Excellent merits over the state-of-the-art

With all these merits, how to efficiently turn the theoretical improvement into actual
improvements is the remaining question.

20

Efficient LBC on IoT Devices03

3.1 Target Schemes and Platforms

3.4 Optimized Dilithium’s NTT on Cortex-M3

3.3 Optimized 16-bit NTT Implementation

3.5 Efficient Polynomial Sampling: Keccak

3.6 Results and Comparisons

3.2 Faster Plantard Arithmetic

21

3.1.1 Target Schemes

 The only KEM scheme to be standardized.
 Module-LWE problem (𝑨𝑨,𝒃𝒃 = 𝑨𝑨𝑻𝑻𝒔𝒔 + 𝒆𝒆).
 Parameters: 𝑛𝑛 = 256,𝒒𝒒 = 𝟏𝟏𝟏𝟏𝟐𝟐𝟑𝟑 < 𝟐𝟐𝟏𝟏𝟐𝟐,𝑘𝑘 = 2,3,4,𝑍𝑍3329[𝑋𝑋]/(𝑋𝑋256 + 1).

 Kyber

 An NTT-friendly variant of NTRU KEM scheme proposed in TCHES2019.
 The KeyGen, Encaps and Decaps are 30 ×, 5 ×, and 8 × faster than the respective

procedures in the NTRU schemes.
 Parameters: 𝒏𝒏 = 𝟏𝟏𝟔𝟔𝟕𝟕,𝒒𝒒 = 𝟏𝟏𝟔𝟔𝟕𝟕𝟏𝟏,𝑍𝑍7681[𝑋𝑋] /(𝑋𝑋768 − 𝑋𝑋384 + 1).

 One out of three final DSA to be standardized.
 Module-LWE problem and Module-SIS problem.
 Parameters: 𝒏𝒏 = 𝟐𝟐𝟐𝟐𝟔𝟔,𝒒𝒒 = 𝟕𝟕𝟏𝟏𝟕𝟕𝟏𝟏𝟔𝟔𝟏𝟏𝟏𝟏 < 𝟐𝟐𝟐𝟐𝟏𝟏,𝑍𝑍8380417[𝑋𝑋] /(𝑋𝑋256 + 1).

 NTTRU

 Dilithium

22

3.1.2 Target Platforms

ARM Cortex-M4: Relative high power, resource and memory IoT platform

 NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupq/pqm4);

 1MB flash, 192KB RAM;

 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

 SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction

for two packed 16-bit vectors;

 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

 Relative expensive load/store instructions: ldr, ldrd, vldm.

 To utilize the efficient SIMD instructions on Cortex-M4, the size of the coefficients is

limited to 16-bit signed integer.

https://github.com/mupq/pqm4

23

3.1.2 Target Platforms

ARM Cortex-M3: Low resource IoT platform

 14 32-bit usable general-purpose registers, no floating-point registers;

 Non-constant time full multiplication instructions: umull, smull, umlal and small; No

SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

 Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the

addition and shifting operations in 1 instruction.

 512KB flash, 96KB RAM;

 SiFive Freedom RISC-V: Extremely low resource and memory IoT platform

 Open-source ISA;

 Only 16KB RAM;

 30 32-bit usable general-purpose registers, no floating-point registers;

 No SIMD extensions and limited multiplication instructions: mul, mulh (5-cycle);

24

3.1.3 Polynomial multiplications

 Both Kyber and NTTRU use 16-bit NTT for polynomial multiplication.
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) implemented with NTT factors the large-degree

polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like 𝑋𝑋2 − 𝑟𝑟 and (𝑋𝑋3 ± 𝑟𝑟) for Kyber and
NTTRU, respectively.

 Dilithium normally uses 32-bit NTT for polynomial multiplication.
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) of Dilithium implemented with 32-bit NTT factors the

large-degree polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like (𝑋𝑋 − 𝑟𝑟) for Dilithium.

 16-bit NTT

 32-bit NTT

Modular multiplication with the twiddle factors can be speeded up with Plantard arithmetic.

25

3.2.1 Faster 16-bit Plantard Arithmetic on
Cortex-M4
 Faster Plantard multiplication by a constant on Cortex-M4
 The Plantard multiplication by a constant (𝒃𝒃 is a constant) saves one multiplication 𝒃𝒃𝒒𝒒𝒃

by precomputing 𝒃𝒃𝒒𝒒𝒃 𝒎𝒎𝒎𝒎𝒎𝒎± 𝟐𝟐𝟐𝟐𝒍𝒍.
 The 16×32-bit multiplication 𝑎𝑎𝑏𝑏𝑞𝑞𝑏 is then implemented with smulwb instruction. The rest

of the computations can be simply implemented with one smlabb instruction.
 The Plantard multiplication by a constant on Cortex-M4 is 1-instruction faster than the

state-of-the-art Montgomery’s.

26

3.2.2 Faster 16-bit Plantard Arithmetic on
Cortex-M3 and RISC-V
 Faster Plantard multiplication by a constant on Cortex-M3 and RISC-V
 Cortex-M3: We can merge the addition and shift operation using the barrel shifter

operation as in Step 3 of Algorithm 4.
 RISC-V: We can use muh with 𝑞𝑞2𝑙𝑙 to merge the mul and asr operation in the final two

steps of Algorithm 4.
 Both implementations are 1-multiplication faster than the Montgomery’s.

27

3.2.3 Faster 16-bit/32-bit Plantard
Arithmetic on Other Platforms
 Faster 32-bit Plantard multiplication by a constant on 64-bit RISC-V
 The 32-bit Plantard arithmetic can be extended to 64-bit RISC-V. The instruction sequences

are the same as the 16-bit Plantard arithmetic on 32-bit RISC-V [1,2].
 Faster 16-bit Plantard multiplication by a constant on customized RISC-V
 Customized SIMD instruction (asravi) for Plantard arithmetic. Two instructions faster

than the Montgomery arithmetic on the same platform [3].

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV{32,64}IM{B}{V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1), 2025.
[2] Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao,and Jingqiang Lin. Eco-crystals: Efficient
cryptography crystals on standard risc-v isa. IEEE Transactions on Computers, pages 1–13, 2024.
[3] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang,Guangyan Li, Donglong Chen, Ray C. C. Cheung, and
Kejie Huang. PQN-TRU: acceleration of ntru-based schemes via customized post-quantum processor. IEEE Transactions on Computers,
2025.

28

3.3.1 Optimized 16-bit NTT Implementation

 Optimizations summary

Efficient Plantard
multiplication by a

constant

Faster butterfly
units

Adequate floating-
point registers

4-layer merging
strategy

Large input range
small output range

Better lazy
reduction strategy

Efficient Plantard
reduction

Faster modular
reduction of
coefficients

Reducing
𝑵𝑵 ⋅ 𝒍𝒍𝒎𝒎𝒍𝒍 𝑵𝑵

multiplication
instructions

Reducing a
number of

memory access
instructions

Minimizing the
modular reduction
for polynomial in

NTT/INTT

Reducing N
multiplication
instructions for

each polynomial

The proposed improved Plantard arithmetic make it possible to replace previous state-of-
the-art Montgomery arithmetic in the NTT implementation on Cortex-M4, Cortex-M3,
RISC-V and etc, further improving the performance of LBC.

29

3.3.2 The 16-bit NTT Results

 The 16-bit NTT results on Cortex-M4

30

3.3.2 The 16-bit NTT Results

 The 16-bit NTT results on Cortex-M3 and RISC-V

31

 16-bit NTT vs 32-bit NTT on Cortex-M3

 Cortex-M3 does not have constant-time full multiplication, which may lead to
insecure 32-bit modular multiplication implementation (side-channel attack).

 The constant-time 32-bit modular multiplication takes 6-8 instructions.
 The constant-time 32-bit CT butterfly takes 19 instructions, compared to 5

instructions for 16-bit CT butterfly;
 The 16-bit NTT is at least 𝟐𝟐~𝟏𝟏 × faster than 32-bit NTT on Cortex-M3 [1].

3.4.1 16-bit NTT vs 32-bit NTT

[1] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-pact Dilithium implementations on Cortex-
M3 and Cortex-M4. IACR Trans.Cryptogr. Hardw. Embed. Syst., 2021(1):1–24, 2021.

32

3.4.2 Polynomial multiplication of Dilithium
 Small polynomial multiplications: 𝒄𝒄𝒔𝒔𝒊𝒊, 𝒄𝒄𝒕𝒕𝒊𝒊
 In Dilithium signature generation and verification, there exists a small polynomial 𝒄𝒄 with

at most 𝝉𝝉 nonzero coefficients (±𝟏𝟏) and the rest of coefficients are 0.
 The coefficient range of 𝒔𝒔𝒊𝒊 is [−𝜂𝜂, 𝜂𝜂], then the coefficients of the product 𝑐𝑐𝒔𝒔𝒊𝒊 are smaller

than 𝜷𝜷 = 𝝉𝝉 · 𝜼𝜼 (smaller than 16-bit).
 The coefficient range of 𝒕𝒕𝒊𝒊 is smaller than 212 or 210, then the coefficients of the product

𝑐𝑐𝒕𝒕𝒊𝒊 are smaller than 𝜷𝜷𝑏 = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟐𝟐 or 𝜷𝜷𝑏 = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟏𝟏 (bigger than 16-bit).
 According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be

treated as multiplications over 𝑍𝑍𝑞𝑞′ 𝑋𝑋 /(𝑋𝑋𝑛𝑛 + 1) with a well-selected modulus 𝑞𝑞𝑏 > 2𝛽𝛽
or 𝑞𝑞𝑏 > 2𝛽𝛽𝑏. In sum, we can use 16-bit NTT for 𝑐𝑐𝒔𝒔𝒊𝒊 and 32-bit NTT for 𝑐𝑐𝒕𝒕𝒊𝒊.

33

3.4.3 Proposed 𝑐𝑐𝒔𝒔𝒊𝒊, 𝑐𝑐𝒕𝒕𝒊𝒊 Implementations on
Cortex-M3
 16-bit NTT over 769 for 𝑐𝑐𝒔𝒔𝒊𝒊
 The coefficient range of 𝑠𝑠𝑖𝑖 is [−𝜂𝜂, 𝜂𝜂], then the coefficients of the product 𝑐𝑐𝒔𝒔𝒊𝒊 are smaller

than 𝜷𝜷 = 𝝉𝝉 · 𝜼𝜼 =78, 196 and 120 for three security levels. [AHKS22] used FNT over
257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

 On Cortex-M3: We optimize the 16-bit NTT over 769 with Plantard arithmetic for all
Dilithium variants, because we can then combine it with multi-moduli NTT.

Multi-moduli NTT with two 16-bit NTTs for 𝑐𝑐𝒕𝒕𝒊𝒊
 The coefficient range of 𝑡𝑡𝑖𝑖 is 212 or 210, then the coefficients of the product 𝑐𝑐𝑡𝑡𝑖𝑖 are

smaller than 𝜷𝜷′ = 𝝉𝝉 · 𝟐𝟐𝟏𝟏𝟐𝟐 = 𝟐𝟐𝟔𝟔𝟐𝟐𝟏𝟏𝟔𝟔𝟏𝟏,𝒒𝒒𝑏 > 𝟐𝟐𝜷𝜷𝑏 = 𝟔𝟔𝟑𝟑𝟏𝟏𝟐𝟐𝟐𝟐𝟏𝟏. We choose a composite
modulus 𝑞𝑞𝑏 = 769 × 3329 = 2560001 and perform NTT computations over
𝑍𝑍𝑞𝑞′[𝑋𝑋]/(𝑋𝑋𝑛𝑛 + 1).

 On Cortex-M3: We optimize 𝑐𝑐𝒕𝒕𝒊𝒊 with the multi-moduli NTT over the 𝒒𝒒′ = 𝟏𝟏𝟔𝟔𝟑𝟑 ×
𝟏𝟏𝟏𝟏𝟐𝟐𝟑𝟑 for all three Dilithium variants and separately optimize the 16-bit NTT over 769
and 3329 with Plantard arithmetic.

34

Multi-moduli NTTs for 𝒄𝒄𝒕𝒕𝒊𝒊 on Cortex-M3

3.4.4 Multi-moduli NTTs for 𝑐𝑐𝒕𝒕𝒊𝒊

35

3.4.5 Dilithium’s NTT Results

 Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on
Cortex-M3 are 4.22×, 4.29×, and 2.14× faster than the constant-time 32-bit NTT,
INTT, and pointwise multiplication, respectively. Compared to the 32-bit variable-time
NTT, INTT, and pointwise multiplication, the speed ups are 2.48×, 2.46×, and 1.24×,
respectively.

 The proposed multi-moduli NTT, INTT and pointwise multiplication
implementations yield 52.76% ∼ 54.76% performance improvements compared to the
constant-time 32-bit NTT. And over 19.47% and 19.07% speed-ups compared with the
variable-time 32-bit NTT and INTT.

 The 16-bit NTT and multi-moduli NTT results on Cortex-M3

36

3.5.1 Efficient Polynomial Sampling: Keccak
 Pipelining memory access

 Lazy rotations
 Utilize the inline barrel shifter instruction on ARMv7-M to merge the xor and ror

instructions, which could help to reduce some cycles.
 We proposed two variants of Keccak implementation considering the code size effect.

One has better performance but requiring larger code size. And one has smaller code
size and an acceptable performance.

37

3.5.2 Keccak Results

 Keccak results on Cortex-M3 and M4

 Combining the pipelining memory access and lazy rotations techniques, we achieve
up to 24.78% and 21.4% performance boosts on Cortex-M3 and M4, respectively

38

3.6 LBC Results: Kyber and NTTRU

 Kyber and NTTRU results on Cortex-M4 without Keccak optimization

3%

55%

39

3.6 LBC Results: Kyber

 Kyber results on Cortex-M3 and RISC-V without Keccak optimization

5%

30%

31%

40

3.6 LBC Results: Dilithium

 Kyber and Dilithium results on Cortex-M3/4 with Keccak optimization

15%

15%

41

Efficient Side-Channel Secure

LBC on IoT Devices
04

4.1 Target Schemes and Platforms

4.2 Optimized Polynomial Multiplication

4.3 Lightweight High-order Raccoon

4.4 Results and Comparisons

42

4.1.1 Target Scheme: Raccoon

 Raccoon: low-complexity masking-friendly O(𝒎𝒎⋅𝐥𝐥𝐨𝐨𝐠𝐠 𝒎𝒎), side-channel secure LBC
scheme.

 Masking gadgets: Complex masking gadgets to secure against side-channel attacks.
(Efficient masking gadgets)

 Hardness: Module-LWE and Module-SIS, similarly to the NIST standard Dilithium.

 Polynomial multiplication: 𝑛𝑛 = 512, q = 𝑞𝑞1 ⋅ 𝑞𝑞2 < 249, 𝑞𝑞1 = 224 − 218 + 1, 𝑞𝑞2 = 225 −
218 + 1,𝑍𝑍𝑞𝑞[𝑋𝑋]/(𝑋𝑋512 + 1). (Efficient 49-bit NTT implementation)

 Memory consumption: At high masking orders, memory consumption becomes the the
major bottleneck for its deployment on IoT devices. (Lightweight implementation of
high-order Raccoon)

 Raccoon – Side-channel secure LBC scheme

43

4.1.2 Target Platforms

ARM Cortex-M4: Relative high power, resource and memory IoT platform

 NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupq/pqm4);

 1MB flash, 192KB RAM;

 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

 SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction

for two packed 16-bit vectors;

 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

 Relative expensive load/store instructions: ldr, ldrd, vldm.

 New instructions involved: smmla, smmls, smlal.

https://github.com/mupq/pqm4

44

4.1.3 Polynomial multiplication

 Raccoon use a 64-bit NTT over a composite modulus 𝒒𝒒 for polynomial multiplication.
 The polynomial ring 𝑍𝑍𝑞𝑞[𝑋𝑋]/𝑓𝑓(𝑋𝑋) implemented with NTT factors the large-degree

polynomial f(X) as
 𝑓𝑓 𝑥𝑥 = ∏𝑖𝑖=0

𝑛𝑛′−1 𝑓𝑓𝑖𝑖 𝑥𝑥 mod 𝑞𝑞,
where 𝑓𝑓𝑖𝑖(𝑋𝑋) are small degree polynomials like 𝑋𝑋 − 𝑟𝑟 .

 Using the CRT theorem, the 64-bit NTT can be split into two 32bit NTT over two 32-
bit moduli 𝒒𝒒𝟏𝟏 and 𝒒𝒒𝟐𝟐, which is more friendly on 32-bit platforms. The overall process is
as follows:
 Polynomial splitting: Two consecutive modular reductions are required to reduce

the 64-bit polynomial coefficients modulo 32-bit 𝑞𝑞1 and 𝑞𝑞2.
 NTT operations: Two 32-bit NTTs, pointwise multiplications and INTTs over 𝑞𝑞1

and 𝑞𝑞2.
 Reconstruction using CRT: Combine the 32-bit results modulo 𝑞𝑞1 and 𝑞𝑞2 into 64-

bit results using the CRT theorem.

 64-bit NTT

Multi-moduli NTT of 32-bit NTTs (more friendly on 32-bit IoT platforms)

45

4.2.1 Optimized Polynomial Multiplication

 Polynomial splitting
 Two variants of Montgomery arithmetic: depending on whether −𝒒𝒒𝑏 or 𝒒𝒒𝑏 is used;
 State-of-the-art Montgomery arithmetic (2-cycle) on Cortex-M4 use −𝒒𝒒𝑏; Not appropriate

for in-place two consecutive modular reductions (Need at least 7 cycles).
 We used 𝒒𝒒𝑏 instead and proposed a 2-instruction faster negative double Montgomery

reductions using the smmla instructions. (Produce the negative of the correct results)

46

4.2.1 Optimized Polynomial Multiplication

 NTT for negative polynomials
 The proposed negative double Montgomery reductions produce negative of the correct

results.
 The linearity of NTT computations ensures that NTT(-𝒙𝒙)=-NTT(𝒙𝒙). Therefore, it will not

affect the correctness of the NTT computations.

 The optimized 32-bit NTT/INTT implementations

 The 3+3+3 layer merging strategy is used for the 9-layer NTT in Raccoon.
 Lazy reduction is comprehensively used to reduce unnecessary modular reductions.

Only INTT with CT butterfly needs modular reductions for 64 coefficients modulo
𝒒𝒒𝟏𝟏,𝒒𝒒𝟐𝟐.

47

4.2.2 Optimized Raccoon Masking Gadgets

 Lazy reduction for Raccoon’s masking gadgets
 We thoroughly reduce the conditional additions/subtractions in Raccoon masking

gadgets: ZeroEncoding, Refresh, AddRepNoise, and Decode.
 We carefully analyze the output range of these gadgets and ensure a correct Raccoon

implementation.

48

4.3 Lightweight High-order Raccoon

 Streaming the matrix-vector multiplication
 Streaming the matrix A: save 80 KiB, 140 KiB, and 252 KiB of memory for Raccoon-

128, Raccoon-192, and Raccoon-256.
 Streaming the masked vector 𝑟𝑟 : reduce 𝟔𝟔(𝒍𝒍 − 𝟏𝟏)𝒎𝒎 KiB of memory.
 Other memory reuses: reduce 𝟕𝟕𝟖𝟖 + 𝟔𝟔𝒍𝒍KiB of memory.

49

4.3.1 Results and Comparisons

 Polynomial arithmetic results on Cortex-M4
 The NTT and INTT are 𝟐𝟐.𝟐𝟐𝟔𝟔 × and 𝟏𝟏.𝟑𝟑𝟕𝟕 × faster than the reference implementation.
 The polynomial left- and right-shift are 𝟏𝟏.𝟐𝟐𝟐𝟐 × and 2.93× faster.

50

4.3.1 Results and Comparisons

Masking gadgets results on Cortex-M4
 The lazy reduction strategy in the masking gadgets results in 𝟏𝟏.𝟏𝟏𝟕𝟕 × to 2.61×

speedups, which further improve the performance of Raccoon.

51

4.3.1 Results and Comparisons

 Raccoon results on Cortex-M4

 The proposed implementations
reduce 32.46%∼40.01% of
the clock cycles compared to
Raccoon’s reference
implementation.

 The proposed memory
optimizations enables the
practical use of high-order
Raccoon, namely Raccoon-
128 with 𝑑𝑑 = 16, Raccoon-
192 with 𝑑𝑑 = 8, and Raccoon-
256 with 𝑑𝑑 = 4,8 on the
selected platform.

52

Conclusions and Publications05

5.1 Conclusions

5.2 Publications

53

5.1 Conclusions

 We proposed an improved Plantard arithmetic tailored for LBC.

 It has excellent merits over the original Plantard, Montgomery, and Barrett arithmetic.

 Theoretical improvements: Improved Plantard Arithmetic

 We explored various optimizations for the improved Plantard arithmetic, NTT,

Keccak, Kyber, NTTRU, Dilithium and side-channel secure masking-friendly

Raccoon implementation on three IoT devices.

 All implementations are open-source and some of them have been merged into the

NIST’s official repository pqm4.

 https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic

 https://github.com/UIC-ESLAS/Kyber_RV_M3

 https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli

 https://github.com/JunhaoHuang/pqm4

 Implementation improvements: Efficient, lightweight and secure LBC

https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic
https://github.com/UIC-ESLAS/Kyber_RV_M3
https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/JunhaoHuang/pqm4

54

5.2 Publications

[1] Junhao Huang, Jipeng Zhang, Haosong Zhao, Zhe Liu, Ray C. C. Cheung, Çetin Kaya Koç,
Donglong Chen*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IACR
Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4).
(CCF-B & Top-tier Conference in Cryptographic Engineering)
[2] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin
Kaya Koc, Donglong Chen*. Yet another Improvement of Plantard Arithmetic for Faster Kyber on
Low-end 32-bit IoT Devices[J]. IEEE Transactions on Information Forensics & Security (TIFS),
2024. (CCF-A & Top-tier Journal in Security)
[3] Junhao Huang, Alexandre Adomnicăi, Jipeng Zhang, Wangchen Dai, Yao Liu, Ray CC Cheung,
Cetin Kaya Koc, Donglong Chen*. Revisiting Keccak and Dilithium Implementations on ARMv7-M.
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2024, 2024(2).
(CCF-B & Top-tier Conference in Cryptographic Engineering)
[4] Junhao Huang, Jipeng Zhang, Weijia Wang, Xuan Yu, Donglong Chen, Efficient High-order
Masking Raccoon on Memory Constrained Devices[J]. (In Submission)

55

5.2 Publications
[5] Jipeng Zhang, Junhao Huang, Lirui Zhao, Donglong Chen, Cetin Kaya Koc, ENG25519: Faster
TLS 1.3 handshake using optimized X25519 and Ed25519[C], Usenix Security, 2024.
(CCF-A & Top-tier Conference in Security)
[6] Haosong Zhao, Junhao Huang, Zihang Chen, Kunxiong Zhu, Donglong Chen, Zhuoran Ji,
Hongyuan Liu, VESTA: A Secure and Efficient FHE-based Three-Party Vectorized Evaluation System
for Tree Aggregation Models[C], ACM SIGMETRICS, 2025.
(CCF-B Flagship Conference in SIGMETRICS Community)
[7] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li,Hao Zhang, Guangyan Li,
Donglong Chen, Ray CC Cheung, Kejie Huang, PQNTRU: Acceleration of NTRU-based Schemes via
Customized Post-Quantum Processor[J], IEEE Transactions on Computers (TC), 2025.
(CCF-A Flagship Journal)
[8] Jipeng Zhang, Yuxing Yan, Junhao Huang, Cetin Kaya Koc*. Optimized Software
Implementation of Keccak, Kyber, and Dilithium on RV{32,64}-IM{B}{V}[J]. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2025, 2025(1).
(CCF-B & Top-tier Conference in Cryptographic Engineering)

56

Thanks for listening!

Look forward to interesting

questions and discussions!

	幻灯片编号 1
	Outline
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15
	幻灯片编号 16
	幻灯片编号 17
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	幻灯片编号 23
	幻灯片编号 24
	幻灯片编号 25
	幻灯片编号 26
	幻灯片编号 27
	幻灯片编号 28
	幻灯片编号 29
	幻灯片编号 30
	幻灯片编号 31
	幻灯片编号 32
	幻灯片编号 33
	幻灯片编号 34
	幻灯片编号 35
	幻灯片编号 36
	幻灯片编号 37
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	幻灯片编号 43
	幻灯片编号 44
	幻灯片编号 45
	幻灯片编号 46
	幻灯片编号 47
	幻灯片编号 48
	幻灯片编号 49
	幻灯片编号 50
	幻灯片编号 51
	幻灯片编号 52
	幻灯片编号 53
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56

