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1.1 Background

1.2 Lattice-based Cryptography

1.3 Contributions

ol

@ D 2005 G @

21©




1.1.1 Quantum Computers NS

Quantum computers are being developed rapidly. Shor’s algorithm in quantum
computers would break the existing public-key cryptosystem (PKC) in polynomial time.
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This prompted the cryptographic community to search for suitable alternatives to
traditional PKC.
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1.1.2 Post-quantum Cryptography NS

NIST initiated a standardization project in 2016 to solicit, evaluate, and standardize the
post-quantum cryptographic algorithms (PQC). Chinese ICCS started to call for
commercial PQC standardization in 2025 [1].

Table 1: Round 3 and Round 4 NIST PQC finalists

| Round | Rouwnd3 | Rowndd ___

Types KEM DSA KEM DSA
ey Kyber Dilithium
Kyber Dilithium (ML-KEM) (ML-DSA)

Falcon
Saber Falcon - (FN-DSA)
Schemes Sohinest

: ) phincs
NTRU Rainbow (SLH-DSA)

Classic ) ) )
McEliece

Lattice-Based Cryptography (LBC) is the most promising alternative in terms of
security and efficiency. Therefore, we will focus on LBC.



https://www.niccs.org.cn/

1.1.3 Internet of Things
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The Internet of Things (IoT) is pervasive in many aspects of modern life, such as smart
healthcare, smart transportation, industrial IoT, smart tourism, and wearable technology.
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Table 2: Number of Internet of Things (IoT) connected
devices worldwide (billion) from 2019 to 2021
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in billions
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ted devices
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It requires huge effort to protect billions of IoT devices from the threat of quantum computing.
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1.1.4 PQC on the IoT: Challenges %fé

The IoT devices are distinct from the traditional CPUs.
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Figure 1.1: Four major limitations of IoT devices

Challenges: explore the efficient, lightweight and secure LBC implementation tailored

for heterogeneous IoT devices.



1.2.1 Lattice-based Cryptography Mo

Lattice-based cryptography relies on the computational difficulty of lattice:

m
L(by, .., by,) = {z x;b;, x; € T}
i=1
, where by, ..., b, are basis vectors. The lattice can be expressed as the sum of x;b;.

The hardness of two LBC finalists Kyber and Dilithium are based on the MLWE and
MSIS problems:

> Module Short Integer Solution (MSIS): Given an n X m lattice A € ZZ*™, find a
nonzero short integer vector x € Z™ satisfying Ax = 0 mod q.

» Module Learning with Errors (MLWE): Given an n X m lattice A € Z7*™™ and a
randomly generated sample e, recover s € Zg from (4, ATs + e mod q).
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1.2.2 LBC Core Operations and Structure *%5"

U Time and memory consuming operations

> Polynomial sampling: SHA-3 (Keccak, 70% of running time)
> Polynomial multiplication: NTT/INTT (O(nlogn) & modular arithmetic);
» Matrix-vector product: large memory consumption.

1 LBC structure

Polynomial
Arithmetic

Modular Arithmetic
arithmetic arithmetic arithmetic

Figure 1.2: An overall structure of the LBC schemes




1.2.3 Cryptographic Engineering NS

O Cryptography deployment in real-world devices
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1.3.1 Optimizations Overview NS
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1.3.2 Contributions NS

Objective
The contributions of this thesis are summarized as follows: Achieved
1. Improved Plantard arithmetic tailored for LBC.
» Two improvements for Plantard arithmetic tailored for LBC; Mathematical
» Two variants of correctness proofs, demonstrating its robustness; Iml};‘;“t’f‘,’me“t &
» Excellent merits over the state-of-the-art modular arithmetic. ey

2. Faster Plantard arithmetic, NTT, Keccak and LBC implementations.
» Faster Plantard arithmetic implementation on [oT platforms;
» Optimized 16-bit NTT and multi-moduli NTT implementations with| Implementation

Plantard arithmetic; Efgde“?y &
» Optimized Keccak permutation on the 32-bit ARMv7-M (over 20% ceurtty
speedups);
» State-of-the-art Kyber, NTTRU, and Dilithium implementations on the
target platforms.

3. Efficient, lightweight and side-channel secure Raccoon implementations.
» Optimized the multi-moduli NTT of the 32-bit NTTs with Montgomery

arithmetic; Implementation
» Time complexity reduction of the masking gadgets; Efficiency &
> Memory optimizations to enable high-order Raccoon on memory- Lsiegch“tzggi‘ )

constrained IoT devices.
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Improved Plantard Arithmetic

2.1 State-of-the-art Modular Arithmetic

2.2 Improved Plantard Arithmetic

2.3 Further Improvement of Plantard Arithmetic
2.4 Another Variant of Plantard Arithmetic

2.5 Comparisons




2.1.1 State-of-the-art Modular Arithmetic "0

] State-of-the-art modular arithmetic, i.e., a X b % q

Both Montgomery (1985) and Barrett multiplication (1986) for [-bit modulus (I = 16 or 32):

» need 3 multiplications;
» use the product c = a X b twice;

» support signed inputs in a large domain, which enable a lazy reduction strategy

Algorithm 1 Signed Mont-
gomery multiplication

Input: Constant [ = 2! where I is the machine
word size, odd g such that 0 < g < g, and
B B

operand a, b such that —5q < ab < 5gq
Output: r = abB Y mod g, r € (—q,q)
1: c=c1f3+co=a-b
2: m:co-q_lmodiﬁ
3ir=ca—|m-q/8]

4: return r

Algorithm 2 Barrett multiplica-
tion

Input: Operand a, b suchthat 0 < a- b < 22;!_'_7,
the modulus g satisfying 2'“;_1 < q < 2'”, and
the precomputed constant A = {22”—”{/@

Output: r = a- bmod g, r € [0, 34]

l: c=a-»b

20t = |(c- )22+

3ir=c—t- q

4: return r




2.1.2 Original Plantard Arithmetic e

1 Plantard’s seminal word-size modular arithmetic
Algorithm 15 Original Plantard multiplication [92]

Input: Unsigned integers a,b € [0,¢]. ¢ < 2,6 = 1+2‘/5, ¢ = ¢ ' mod 2%, where [ is

the machine word size

Output: r = ab(—2"%)mod ¢ where r € [0, ¢

I
1. r = [([[abq’ Jar]' + 1) q] > bg' could be precomputed when b is constant
9. return r Il [a]; « amod 2}, [a]'! « a > I,

Plantard multiplication:

Pros:

» When one of the operands (b) is fixed, it is one multiplication fewer than
Montgomery arithmetic. (Suitable for NTT computation!)

Cons:

> Introduces an [ X 2[-bit multiplication bq’. (Only suitable on specific platforms)

> only supports unsigned integers in a small domain [0, q]. (How to support signed
integers in a larger input range?)



2.2 Improved Plantard Arithmetic o

O Improved Plantard arithmetic (TCHES2022)

> Tailored for LBC word size moduli: proposed a new modulus restriction g < 2!7¢-1
by introducing a small integer @« > 0; provided two versions of correctness proof.
» Following the proof of the original Plantard arithmetic paper.
» The CRT interpretation from Prof. Guangwu Xu[2].
» Larger input range: from unsigned integers [0, g] to signed integers in [—q2%, q2“];

» Smaller output range: from [0, q] signed integer in [— qTH,g);

» Inherent advantage: when b is a constant, it can save one multiplication by
precomputing bq’ mod 22,

Algorithm 16 Improved Plantard multiplication

Input: Two signed integers a,b € [—¢2%,¢2°],q¢ < 277!, ¢’ = ¢ mod™ 2%
Output: 7 = ab(—2"?) mod® ¢ where r € [—%1, 1)
z
7= | ([labgar)' +2°) q]

2: return r

[1] Junhao Huang, Jipeng Zhang, et al*. Improved Plantard Arithmetic for Lattice-based Cryptography[J]. IJACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2022, 2022(4): 614-636.
[2] Yanze Yang, Yiran Jia, and Guangwu Xu. On modular algorithms and butterfly operations in number theoretic transform.

Cryptology ePrint Archive,2024.



2.3 Further Improvement of Plantard
Arithmetic 20
( Plantard arithmetic with larger input range (TIFS2024)

» The improved Plantard mUItiplication Algorithm 17 Plantard multiplication with enlarged input range
supports Signed inputs in Input: Two signed integers a,b such that ab € [q2! — g2/t 2% — g21+*) ¢ <

[_qza” qza’] € (_zl—l’ 21—1), i.e., 9l-a=1 ¢/ — g1 mod* 22
the product of ab € (—22172,221=2)_ Output: r = ab(—2*)mod* g where 1 & [~ 431, 9)
17 = [ ((labgla]' +2°) o]
» Further extend the input range to 2 return r
ab € [qzl _ q21+0£, 221 _ q21+a).
(refer the correctness proof to the
thesis) mae < (22 = q2"%) /bnaa

= (2% — 3329 x 2'%)/3328 = 230.13¢.

—_

» For Kyber, when b is a constant, the
previous range of a € [—64q, 64q].
After the improvement, the range of a @in > (42 = q27%) [bnaa
is increased up to a € = (3329 x 2'% — 3329 x 2!%)/3328 ~ —137.85¢.
|[—137q,230q], 2. 14 X larger.

[1] Junhao Huang, Haosong Zhao, Jipeng Zhang, Wangchen Dai, Lu Zhou, Ray CC Cheung, Cetin Kaya Koc, Donglong Chen*. Yet
another Improvement of Plantard Arithmetic for Faster Kyber on Low-end 32-bit IoT Devices[J]. I[EEE Transactions on Information

Forensics & Security (TIFS), 2024.
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2.4 Another Variant of Plantard Arithmetic %f‘

( Another Variant of signed Plantard arithmetic

» Daichi et al.[2] concurrently proposed another variant of signed Plantard arithmetic in
2022.

» The rounding-to-nearest operations in their version are not architecture-friendly in
most platforms.

» In one of the coauthored work[1], we manage to replace one rounding-to-nearest with
one flooring operation, reducing one rounding-to-nearest operation.

Algorithm 18 Signed Plantard multiplication [15]
Input: Two signed integers a, b with |al, |b| < 2!, the odd modulus ¢ < 2/~ and

ql — qfl mod:l: 22[

e —90 + -1 g¢-1
Output: 7 = ab(=2"*)mod™ ¢,r € [-L, 4~] S oods 1
1: 7 = abg’ mod* 22 SIGNED PLANTARD MULTIPLICATION
int64_t signedPlantardMul (int64_t A, int64=t B) {
2:\r = |r/B] return (((a+B [ Ox80000000)>>32)I*P +[0%80000000)>>32;
}
3|r=1rq¢/S]

4: return r

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV {32,64}IM{B} {V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1),
2025.

[2] Daichi Aoki, Kazuhiko Minematsu, Toshihiko Okamura, and Tsuyoshi Takagi.Efficient Word Size Modular Multiplication over
Signed Integers. In 29th IEEESymposium on Computer Arithmetic, ARITH 2022, Lyon, France, September12-14, 2022, pages 94—

101. IEEE, 2022.
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2.5 Comparisons S

1 Excellent merits over the state-of-the-art

» Efficiency: Plantard multiplication is one multiplication faster than the state-of-the-art
Montgomery and Barrett multiplication when b is a constant.

> Input range: [q2! — q2'%, 22! — 27 ®) vs [—q2!1, q2!71] for a = 0, at least 29+1
times bigger than Montgomery’s;

» Output range: [— %1, g) vs (—q, q), only half of the Montgomery’s

Algorithm 7 Signed Montgomery multiplication [Seil§]

Input: Operand a, b such that — ﬁq <ab < gq, where 3 = 2! with the machine word size
[, the odd modulus g € (0, 5 8
Output r=abf ' mod q,r € ( q,q)
.c=cf+ecg=a-b

2 m=cy-q 'modT 3 > mod™® obtains a signed product, ¢! is a precomputed
constant
3ty = |m-q/B] > shift right operation

4: = ] — tl
5 return r

With all these merits, how to efficiently turn the theoretical improvement into actual
improvements is the remaining question.
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Efficient LBC on IoT Devices

3.1 Target Schemes and Platforms
3.2 Faster Plantard Arithmetic

3.3 Optimized 16-bit NTT Implementation
3.4 Optimized Dilithium’s NTT on Cortex-M3
3.5 Efficient Polynomial Sampling: Keccak

3.6 Results and Comparisons



3.1.1 Target Schemes ne

O Kyber

» The only KEM scheme to be standardized.
> Module-LWE problem (4, b = A”s + e).
> Parameters: n = 256,q = 3329 < 212k = 2,3,4, Z33,0[X]/(X?%° + 1).

O NTTRU

» An NTT-friendly variant of NTRU KEM scheme proposed in TCHES2019.
» The KeyGen, Encaps and Decaps are 30 X, 5 X, and 8 X faster than the respective

procedures in the NTRU schemes.
> Parameters: n = 768,q = 7681, Z,.4,[X] /(X768 — X38% + 1),

U Dilithium

> One out of three final DSA to be standardized.
» Module-LWE problem and Module-SIS problem.
> Parameters: n = 256,q = 8380417 < 223, Zg3g0417[X] /(X?°6 + 1).




9
3.1.2 Target Platforms 7)'74

(d ARM Cortex-M4: Relative high power, resource and memory IoT platform

» NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupg/pgm4);

» 1MB flash, 192KB RAM;

» 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

» SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction
for two packed 16-bit vectors;

» 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

» Relative expensive load/store instructions: 1dr, ldrd, vidm.

» To utilize the efficient SIMD instructions on Cortex-M4, the size of the coefficients is

limited to 16-bit signed integer.



https://github.com/mupq/pqm4
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3.1.2 Target Platforms 7)%

(1 ARM Cortex-M3: Low resource IoT platform

» 14 32-bit usable general-purpose registers, no floating-point registers;

» Non-constant time full multiplication instructions: umull, smull, umlal and small; No
SIMD extensions and limited multiplication instructions: mul, mla (1, 2 cycles).

» Inline barrel shifter operation, e.g., add rd, rn, rm, asr #16, which can merge the
addition and shifting operations in 1 instruction.

» 512KB flash, 96KB RAM;
U SiFive Freedom RISC-V: Extremely low resource and memory IoT platform

» Open-source ISA;
» Only 16KB RAM;
» 30 32-bit usable general-purpose registers, no floating-point registers;

» No SIMD extensions and limited multiplication instructions: mul, mulh (5-cycle);




3.1.3 Polynomial multiplications 1T

d 16-bit NTT

» Both Kyber and NTTRU use 16-bit NTT for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) implemented with NTT factors the large-degree

polynomial f(X) as

> fO) =I5 i) mod g,
where f;(X) are small degree polynomials like (X% — r) and (X3 + r) for Kyber and

NTTRU, respectively.
O 32-bit NTT

» Dilithium normally uses 32-bit NTT for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) of Dilithium implemented with 32-bit NTT factors the

large-degree polynomial f(X) as

> f(x) =

i=o" fi(x) mod g,

where f;(X) are small degree polynomials like (X — r) for Dilithium.

CT butterfly

a a H
b:Z a —

b
b-(¢

¢

b

GS butterfly

re a—b)-¢

¢

Modular multiplication with the twiddle factors can be speeded up with Plantard arithmetic.




3.2.1 Faster 16-bit Plantard Arithmetic on _oi
Cortex-M4 21®

( Faster Plantard multiplication by a constant on Cortex-M4

» The Plantard multiplication by a constant (b is a constant) saves one multiplication bq’
by precomputing bq’ mod* 22.,

» The 16x32-bit multiplication abq’ is then implemented with smulwb instruction. The rest
of the computations can be simply implemented with one smlabb instruction.

» The Plantard multiplication by a constant on Cortex-M4 is 1-instruction faster than the
state-of-the-art Montgomery’s.

AlgAlgorithm 19 The 2-cycle improved Plantard multiplication by a constant on [12]

InpCortex-M4
Input: An [-bit signed integer a € [—2'1 2!=1), a precomputed 2I-bit integer bq’

ut

where b is a constant and ¢ = ¢! mod™ 2%
1:

‘Output: T'top = ab(_2_21) mOdi q;Ttop € [_%17 %)

. _—1
2, bq' +— bg~' mod* 2% > precomputed )

_ l
3° 9. smulwb r,bq . a S Habq/]2l]l+ [C]
4: 3. smlabb r, 7. q, g2 > Teop < lq[r]i + qza]l

4: return ry,,




3.2.2 Faster 16-bit Plantard Arithmetic on ole,
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Cortex-M3 and RISC-V KN4

(] Faster Plantard multiplication by a constant on Cortex-M3 and RISC-V

» Cortex-M3: We can merge the addition and shift operation using the barrel shifter
operation as in Step 3 of Algorithm 4.

> RISC-V: We can use muh with g2 to merge the mul and asr operation in the final two
steps of Algorithm 4.

» Both implementations are 1-multiplication faster than the Montgomery’s.

Algorithm 4 Efficient Plantard multiplication by a constant Algorithm 5 Efficient Plantard multiplication by a constant

for Kyber on Cortex-M3 for Kyber on RISC-V
Input: An 32-bit signed integer a € [—157¢,230q], a pre- Input: An 32-bit signed integer a € [—157¢,230q], a pre-
Computed 32-bit integer bg’ where b is a constant and computed 32-bit integer bg’ where b is a constant and
¢ = ¢~ mod* 232 ¢ =g 'mod2% ¢2! = ¢ x 2!
Output: 7 = ab(—2"2)mod™ ¢,r € (-4, %) Output: r = ab(—2~?)mod™* ¢,r € (-4, %)
I: bg" < bg~! mod 2% > precomputed 1: bg’ +— bg~! mod™ 22 > precomputed
2: mul 7, a,bq’ > 7 < [abgle; 2: mul 7, a,bq > 7 < [abq']y
3fadd r, 27, 7, ast#16 >r < (|r]" +2%) |3: srai r,r, #16
4: mul 7,7, q 4:_addi r. 1, 2% > 1 ([r]L +29)
5. asr r,r, #16 > 7 < [rq) S:I?ulh r, 7, q2" > 7 < [rq2']*
6: return r 6: return r




3.2.3 Faster 16-bit/32-bit Plantard ole,
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Arithmetic on Other Platforms 21

] Faster 32-bit Plantard multiplication by a constant on 64-bit RISC-V

» The 32-bit Plantard arithmetic can be extended to 64-bit RISC-V. The instruction sequences
are the same as the 16-bit Plantard arithmetic on 32-bit RISC-V [1,2].

() Faster 16-bit Plantard multiplication by a constant on customized RISC-V

» Customized SIMD instruction (asravi) for Plantard arithmetic. Two instructions faster
than the Montgomery arithmetic on the same platform [3].

Algorithm 24 Efficient Plantard multiplication by a constant for Dilithium on  Algorithm 25 Efficient Plantard multiplication by a constant for NTRU and Hawk

RVG4IM on customized RISC-V SIMD ISA
Input: An 64-bit signed integer @ € [—130686¢, 131457¢|, a precomputed 64-bit

Input: An 32-bit signed integer a, a precomputed 32-bit integer bg’ where b is a

integer bg’ where b is a constant and ¢ = ¢~ mod 2%, ¢2! = ¢ x 2! constant and ¢ = ¢~ ' mod 2%2, ¢2! = ¢ x 2!

: r=ab(—2"% * .
ORGP = Lol Output: r = ab(—2"2) mod* ¢

1: bg' « bg~' mod* 2% > precomputed

1: bg' + bg~' mod™ 2% > precomputed
2: mul r, a, by’ b 1 < [abg']u
2: mulv r, a, by’ B 1 [abq']y
3: srai r,r, #32
' . ' 3] asravi r,r, 2% > 1+ ([r]' +2%)
1: addi r,r, #256 >r ¢+ ([r]' +2%
. i: mulvh r,r,¢2! b« [rg22
5. mulh 7,7, ¢2' b7 [rg2)% 1 [ 1 }
6: return r 5 return r

[1] Jipeng Zhang, Yuxing Yan, Junhao Huang, and Cetin Kaya Koc. Optimized Software Implementation of Keccak, Kyber, and
Dilithium on RV{32,64}IM{B} {V}. IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2025(1), 2025.
[2] Xinyi Ji, Jiankuo Dong, Junhao Huang, Zhijian Yuan, Wangchen Dai, Fu Xiao,and Jingqiang Lin. Eco-crystals: Efficient
cryptography crystals on standard risc-v isa. IEEE Transactions on Computers, pages 1-13, 2024.

[3] Zewen Ye, Junhao Huang, Tianshun Huang, Yudan Bai, Jinze Li, Hao Zhang,Guangyan Li, Donglong Chen, Ray C. C. Cheung, and
Kejie Huang. PQN-TRU: acceleration of ntru-based schemes via customized post-quantum p

2025.

27
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3.3.1 Optimized 16-bit NTT Implementation %%

U Optimizations summary

Efficient Plantard
multiplication by a
constant

Adequate floating-
point registers

Large input range Efficient Plantard
small output range reduction

Faster modular
reduction of
coefficients

Faster butterfly 4-layer merging
units strategy

Better lazy

reduction strategy

Reducing Reducing a
number of

multiplication memory access
instructions instructions

Minimizing the Reducing
modular reduction multiplication
for polynomial in instructions for
NTT/INTT each polynomial

The proposed improved Plantard arithmetic make it possible to replace previous state-of-
the-art Montgomery arithmetic in the NTT implementation on Cortex-M4, Cortex-M3,
RISC-V and etc, further improving the performance of LBC.
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3.3.2 The 16-bit NTT Results S

(d The 16-bit NTT results on Cortex-M4

Table 4.2: Cycle counts for the core polynomial arithmetic in Kyber and NTTRU

on Cortex-M4, i.e., NTT, INTT, base multiplication, and base inversion.

Scheme  Implementation NTT INTT Base Mult Base Inv
[12] 6 822 6951 2291 -
This work® 5441 5775 2421 -
Speed-up 20.24% 16.92% -5.67% -
Stack|3] 5967 5917 2293 -
Kyber
Speed|3] 5967 5471 1202 -
This work” 4474 4684/4819/4 854 2422 -

Speed-up (stack) 25.02% 20.84%/18.56%/17.97%  -5.58% -
Speed-up (speed) 25.02% 14.38%/11.92%/11.28%  -101.41%

[79] 102 881 97986 44703 100 249
NTTRU This work 17274 20931 10550 40763
Speed-up 83.21% 78.64% 76.40% 59.34%

¢ Implementation based on [12], * Implementation based on the stack-friendly code of [3].
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3.3.2 The 16-bit NTT Results Ao

(d The 16-bit NTT results on Cortex-M3 and RISC-V

Table 4.3: Cycle counts for the core polynomial arithmetic in Kyber, namely NTT,

INTT and base multiplication, in Kyber on Cortex-M3, SiFive Freedom E310, and

PQRISCV.
Platform Implementation NTT INTT Base Multiplication
Denisa et al. [55] 10874 13049 4821
This work (stack) 8026 8594/8799 4311
Cortex M3 This work (speed) 8026 8594 3028/3922/5851
Speedup (stack)  26.19% 34.14%/32.57% 1.06%
Speedup (speed)  26.19% 34.14% 37.19%/18.65%/-21.37%
— Dewactal 54 2033 ses3

This work (stack) 15888  15719/16 227 10020

This work (speed) 15888 15719 4893/5662/9313

SiFive Freedom E310
Speedup (stack)  34.76% 56.95%/55.53% -

Speedup (speed)  34.76% 56.95% -

a

Denisa et al. [54] 28417 42636 -
This work (stack) 21975  23666,/24 146 12236
This work (speed) 21975 23666 T7747/9795/13068

PQRISCV
Speedup (stack)  22.67% 44.49%/43.37% -

Speedup (speed)  22.67% 44.49% -

a. [54] did not provide results for base multiplication.




3.4.1 16-bit NTT vs 32-bit NTT Sl

(1 16-bit NTT vs 32-bit NTT on Cortex-M3

» Cortex-M3 does not have constant-time full multiplication, which may lead to
insecure 32-bit modular multiplication implementation (side-channel attack).

» The constant-time 32-bit modular multiplication takes 6-8 instructions.

» The constant-time 32-bit CT butterfly takes 19 instructions, compared to 5
instructions for 16-bit CT butterfly;

» The 16-bit NTT is at least 2~3 X faster than 32-bit NTT on Cortex-M3 [1].

NTT | NTT™! o

GKOS18| | constant-time | M4 | 10701 | 11662 -
Dilithium® This work | constant-time | M4 | 8540 | 8923 | 1955
This work | variable-time | M3 | 19347 | 21006 | 4899
This work | constant-time | M3 | 33025 | 36609 | 8479
Kyber® ABCG20] | constant-time | M4 | 6855 | 6983 | 2325
This work | constant-time | M3 | 10819 | 12994 | 4773
<! [ABCG20] | constant-time | M4 | 68131 | 51231 | 6229
NewHopelO24% i work | constant-time | M3 | 77001 | 93128 | 18722

& n = 256,q = 8380417 (23 bits), 8 layer NTT/NTT !
bn = 256,q = 3329 (12 bits), 7 layer NTT/NTT *
°n = 1024, ¢ = 12289 (14 bits), 10 layer NTT/NTT !

[1] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-pact Dilithium implementations on Cortex-
M3 and Cortex-M4. IACR Trans.Cryptogr. Hardw. Embed. Syst., 2021(1):1-24, 2021.



3.4.2 Polynomial multiplication of Dilithium °*%&"

U Small polynomial multiplications: cs;, ct;

» In Dilithium signature generation and verification, there exists a small polynomial ¢ with
at most T nonzero coefficients (+1) and the rest of coefficients are 0.

» The coefficient range of s; is [—n, 7], then the coefficients of the product cs; are smaller
than f = 7 - 7 (smaller than 16-bit).

> The coefficient range of t; is smaller than 212 or 219, then the coefficients of the product
ct; are smaller than B’ = 7 - 212 or B’ = 7 - 219 (bigger than 16-bit).

» According to [CHK+21, Section 2.4.6], these kinds of polynomial multiplications can be
treated as multiplications over Zg, [X]/(X™ + 1) with a well-selected modulus q' > 28
or g’ > 2. In sum, we can use 16-bit NTT for cs; and 32-bit NTT for ct;.

Table 1: Dilithium parameters [DKL™18]

NIST security level 2 3 5
q [modulus] 8380417 8380417 8380417
n [the order of polynomial] 256 256 256
d [drop bits from t] 13 13 13
7 [# of £1's in 39 49 60
71 |y coefficient range] 217 219 219
¥2 [low-order rounding range] (¢ —1)/88 (¢—1)/32 (¢—1)/32
(k1) [dimensions of A] (4,4) (6,5) (8.7)
7 [secret key range] 2 1 2
3 =711 [es; coefficient range] 78 196 120
to coefficient range 212 212 212
t, coefficient range 210 210 210




3.4.3 Proposed cs;, ct; Implementations on  ole,
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Cortex-M3 2
1 16-bit NTT over 769 for cs;

» The coefficient range of s; 1s [—n, 1], then the coefficients of the product cs; are smaller
than f = 7 -1 =78, 196 and 120 for three security levels. [AHKS22] used FNT over
257 for Dilithium2 and Dilithium5, and used NTT over 769 for Dilithium3.

» On Cortex-M3: We optimize the 16-bit NTT over 769 with Plantard arithmetic for all
Dilithium variants, because we can then combine it with multi-moduli NTT.

U Multi-moduli NTT with two 16-bit NTTs for ct;

> The coefficient range of t; is 212 or 219, then the coefficients of the product ct; are
smaller than B’ = - 2% = 245760,q" > 23’ = 491520. We choose a composite
modulus ¢' = 769 x 3329 = 2560001 and perform NTT computations over
Zg[X]/(X™ + 1).

» On Cortex-M3: We optimize ct; with the multi-moduli NTT over the g’ = 769 X

3329 for all three Dilithium variants and separately optimize the 16-bit NTT over 769

and 3329 with Plantard arithmetic.
quﬂ = ZQU X Z(h;

Lo [X] /(X + 1) 22 Z [ X]/(X? — Q)
Zay [X]/(XP° + 1) 2 Z, [X]/(X? = (),




3.4.4 Multi-moduli NTTs for ct; 70;

K-,

O Multi-moduli NTTs for ct; on Cortex-M3

Algorithm 4 Multi-moduli NT'T for computing 32-bit NTT on Cortex-M3
Input: Declare arrays: int32_t c¢_32[256],t_32[256],tmp_32[256] ,res_32[256]
[ int16_t *cl_16=(int16_tx)c_32;

int16_t *ch_16=(int16_t*)&c_32[128];

int16_t *tl_16=(int16_t*)t_32;

int16_t *th_16=(int16_t*)&t_32[128];

int16_t *tmpl_16=(int16_t*)tmp_32;

int16_t *tmph_16=(int16_t*)&tmp_32[128];

1: ¢1_16[256] < ¢,ch_ 16 [256] < ¢ > Pre-store ¢ in the bottom and top halves of
c_32 as 16-bit arrays

Input: Declare pointers: <

2: t1_16[256] <—t,th_16[256] < > Pre-store ¢ in the bottom and top halves of
t_32 as 16-bit arrays
3: c1_16[256] = NTT,, (c1_16) > éop = NTTy, (¢)
4: ch_16[256] = NTT,, (ch_16) > ¢ = NTT, (¢)
5: t1_16[256] = NTT,,(t1_16) > fg = NTTy, (¢)
6: th_16[256] = NTT,, (th_16) > & = NTT, (1)
7: tmpl_16[256] = basemul,,(c1_16,t1_16) > & - fo = basemuly, (o, fo)
8: tmph_16[256] = basemul,, (ch_16,th_16) > & -t = basemuly, (¢1, tl)
9: tmpl_16[256] = INTT,, (tmpl_16) > INTT,, (¢ - to)
10: tmph_16[256] = INTT,, (tmph_16) > INTT,, (& En
11: res_32[256] = CRT(tmpl_16, tmph_16) > CRT(INTT,, (¢ - to), INTqu (C 1))

12: return res_32




3.4.5 Dilithium’s NTT Results %%

(d The 16-bit NTT and multi-moduli NTT results on Cortex-M3

» Using the Plantard arithmetic, the 16-bit NTT, INTT, and pointwise multiplication on
Cortex-M3 are 4.22x, 4.29x, and 2.14 X faster than the constant-time 32-bit NTT,
INTT, and pointwise multiplication, respectively. Compared to the 32-bit variable-time
NTT, INTT, and pointwise multiplication, the speed ups are 2.48%, 2.46x, and 1.24 X,
respectively.

» The proposed multi-moduli NTT, INTT and pointwise multiplication
implementations yield 52.76% ~ 54.76% performance improvements compared to the
constant-time 32-bit NTT. And over 19.47% and 19.07% speed-ups compared with the
variable-time 32-bit NTT and INTT.

Platform Prime Ref. NTT INTT Pointwise CRT
8380417 [GKS20] constant-time 33077 36661 8528 X
8380417 [GKS20]| variable-time 19405 21051 4944 X

M3 3329 x 7681 [ACCT22] 16770 19056 11927 4637
769 This work 7830 8543 3989 X

769 x 3329 This work 15626 17037 8061 3735
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3.5.1 Efficient Polynomial Sampling: Keccak 7,|d‘

 Pipelining memory access

|| .macro xorb result ,b,g,k,m,s 1| .macro xorb result ,b,g,k,m,s

2 ldr \result, [r0, #\b] 2 ldr \result, [r0, #\bl]

3 ldr ri, [r0, #\g] 3 ldr ri, [r0, #\g]

1 eors \result, \result, rl | ldr r5, [rO, #\k]

5 ldr ri, [r0, #\kl] 5 ldr rii1, [r0, #\m]

6 eors \result, \result, ri 6 ldr ri2, [r0, #\s]

7 ldr ri, [r0, #\m] 7 eors \result, \result, ril
8 eors \result, \result, ri 8 eors \result, \result, rb5
9 ldr ri, [r0, #\s] 9 eors \result, \result, rii
10 eors \result, \result, ri 10 eors \result, \result, ri2
11| .endm 11| .endm

O Lazy rotations

» Utilize the inline barrel shifter instruction on ARMv7-M to merge the xor and ror
instructions, which could help to reduce some cycles.

» We proposed two variants of Keccak implementation considering the code size effect.
One has better performance but requiring larger code size. And one has smaller code

size and an acceptable performance.




O
3.5.2 Keccak Results 7)%

1 Keccak results on Cortex-M3 and M4

» Combining the pipelining memory access and lazy rotations techniques, we achieve
up to 24.78% and 21.4% performance boosts on Cortex-M3 and M4, respectively

Table 4.1: Keccak-p[1600,24] benchmark on Cortex-M3 and M4.

Implementation characteristics™ Speed (clock cycles)  Code size RAM
Ref.
ldr/str lazy ror M3 M4 (bytes) (bytes)
XKCP  mostly grouped X 13015 11725 5576 264
grouped X 10785 10219 5772 264
This work grouped v (3/4) 9981 9415 6556 264
erouped v (4/4) 9789 9218 0536 264

*All listed implementations take advantage of the in-place processing and bit-interleaving techniques.



3.6 LBC Results: Kyber and NTTRU
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1 Kyber and NTTRU results on Cortex-M4 without Keccak optimization

3%

S55%

KeyGen Encaps Decaps
Scheme | Implementation
k= k= k= k= k= k= k= k= k=
454k | 741k | 1177k | 548k | 893k | 1367k | 506k | 832k | 1287k
12
12 2464 | 2696 | 3584 | 2168 | 2640 | 3208 | 2184 | 2656 | 3224
446k | 729k | 1162k | 542k | 885k | 1357k | 497k | 818k | 1270k
This work®
2464 | 2696 | 3584 | 2168 | 2640 | 3208 | 2184 | 2656 | 3224

NTTRU

This work

9372

7452

8816

¢ ITmplementation based on [12], ® Implementation based on the stack-friendly code of [3].




3.6 LBC Results: Kyber
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 Kyber results on Cortex-M3 and RISC-V without Keccak optimization

Kyber512 Kyber768 Kyber1024
Platform Implementation
KeyGen | Encaps | Decaps | KeyGen | Encaps | Decaps | KeyGen | Encaps | Decaps
h41k 650k 622k 878k 1054k | 1010k | 1388k | 1602k | 1543k
Denisa et al.[55]
2212 2300 2308 3084 2772 2788 3596 3284 3300
519k 628k 590k 844k 1025k | 967k 1342k | 1563k | 1486k
5% Cortex-M3 This work (stack)
2212 2300 2308 3084 2772 2788 3596 3284 3300
518k 626k 587k 842k 1017k | 958k 1333k | 1548k | 1471k
This work (speed)
3268 3860 3 860 4044 4636 4636 4812 5404 5404
2229k | 2927k | 2856k | 4166k | 5071k | 4957k | 6696k | 7809k | 7662k
Denisa et al.[54]
6544 9200 9984 10640 | 13808 | 14944 | 15760 | 19440 | 21056
1937k | 2355k | 2100k | 3147k | 3822k | 3467k | 4964k | 5794k | 5344k
PQRISCV This work (stack)
30% 2408 2488 2520 2952 3016 3032 3464 3528 3544
o
1926k | 2339k | 2084k | 3104k | 3768k | 3413k | 4890k | 5704k | 5254k
This work (speed)
3432 4024 4040 4216 4808 4840 5032 5608 5656
1497k | 1812k | 1601k | 2413k | 2929k | 2635k | 3794k | 4435k | 4045k
This work (stack)
2580 2660 2708 3060 3124 3156 3572 3636 3668
319 SiFive Freedom E310
1597k | 1903k | 1674k | 2731k | 3203k | 2919k - - -
This work (speed)
3620 4212 4244 4340 4932 4964 - - -




3.6 LBC Results: Dilithium B

( Kyber and Dilithium results on Cortex-M3/4 with Keccak optimization

Table 6: PQC benchmark on the Cortex-M4 using the pgm4 framework. Averaged over
1000 executions.

keygen sign/encaps verify /decaps
Scheme Keccak Impl.
speed hashing speed hashing speed hashing

15% Dilithium?2 XKCP 1595k 83.47% 4052k 64.53% 1576k 80.47%
This work 1357k 80.57% 3487k 60.02% 1350k  77.2%

Dilithium3 XKCP 2828k 85.54% 6523k 62.95% 2702k 82.62%

This work 2394k 82.92% 5574k 58.97% 2302k 79.61%

Dilithium5b XKCP 4817k  86.6% 8534k 68.08% 4714k  84.69%

This work 4069k  84.14% 7730k 63.05% 3998k 81.95%

15% Kyber512 XKCP 432k  80.12% 527k  82.86% 472k  73.76%
This work 369k  76.75% 448k  79.85% 409k  69.74%

Kyber768 XKCP 704k 79.04% 860k  82.38% T8k  74.75%

This work 604k  75.59% 732k  79.32% 674k  70.84%

Kyber1024 XKCP 1122k 79.58% 1314k 82.46% 1208k 76.07%

This work 962k  76.18% 1119k 79.41% 1043k 72.29%
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4.1.1 Target Scheme: Raccoon o ’)TO"

J Raccoon — Side-channel secure LBC scheme

» Raccoon: low-complexity masking-friendly O(d-log d), side-channel secure LBC
scheme.

» Masking gadgets: Complex masking gadgets to secure against side-channel attacks.
(Efficient masking gadgets)

» Hardness: Module-LWE and Module-SIS, similarly to the NIST standard Dilithium.

> Polynomial multiplication: n = 512,q = q; - q; < 2%%,q; = 224 — 218 + 1,q, = 22° —
218 +1,7,[X]/(X°'% + 1). (Efficient 49-bit NTT implementation)

» Memory consumption: At high masking orders, memory consumption becomes the the
major bottleneck for its deployment on IoT devices. (Lightweight implementation of
high-order Raccoon)




4.1.2 Target Platforms %44

(d ARM Cortex-M4: Relative high power, resource and memory IoT platform

» NIST’s reference 32-bit platform for evaluating PQC in IoT scenarios (a popular pqm4

repository: https://github.com/mupg/pgqm4);

» 1MB flash, 192KB RAM;

» 14 32-bit usable general-purpose registers, 32 32-bit floating-point registers;

» SIMD (DSP) extensions: uadd16, usub16 instructions perform addition and subtraction
for two packed 16-bit vectors;

» 1-cycle multiplication instructions: smulw{b,t}, smul{b,t}{b,t};

» Relative expensive load/store instructions: 1dr, ldrd, vidm.

» New instructions involved: smmla, smmls, smlal.



https://github.com/mupq/pqm4
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4.1.3 Polynomial multiplication

O 64-bit NTT

» Raccoon use a 64-bit NTT over a composite modulus g for polynomial multiplication.
» The polynomial ring Z,[X]/f (X) implemented with NTT factors the large-degree

polynomial f(X) as

> fO0) =TIEg" i) mod g,
where f;(X) are small degree polynomials like (X — 7).

(1 Multi-moduli NTT of 32-bit NTTs (more friendly on 32-bit IoT platforms)

» Using the CRT theorem, the 64-bit NTT can be split into two 32bit NTT over two 32-
bit moduli g4 and g, which is more friendly on 32-bit platforms. The overall process is
as follows:

» Polynomial splitting: Two consecutive modular reductions are required to reduce
the 64-bit polynomial coefficients modulo 32-bit g; and q,.

» NTT operations: Two 32-bit NTTs, pointwise multiplications and INTTs over g4
and q-.

» Reconstruction using CRT: Combine the 32-bit results modulo g; and g, into 64-
bit results using the CRT theorem.
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4.2.1 Optimized Polynomial Multiplication *%&"

 Polynomial splitting

» Two variants of Montgomery arithmetic: depending on whether —q’ or q' is used;

> State-of-the-art Montgomery arithmetic (2-cycle) on Cortex-M4 use —q'; Not appropriate
for in-place two consecutive modular reductions (Need at least 7 cycles).

» We used q' instead and proposed a 2-instruction faster negative double Montgomery
reductions using the smmla instructions. (Produce the negative of the correct results)

Algorithm 33 Double modular reduc-

tions with original Montgomery reduction

Input: a = ag + a, - 2%

Output: a-2-2mod* ¢, a-2732 mod* ¢,

1:

2:

mul t3, ag, —qh
mov ty, ag

mov fo, ay

smlal ag,ay,ts, gz

mul 3, %y, *(]i

: smlal tl._ f,g‘ t;g, q1

mov dy, tsy

return ag, a,

Algorithm 35 The proposed negative double Montgomery reductions

Input: The 64-bit coefficient a = ag + ay - 2%2, moduli g1, g2, ¢} = ¢; ' mod 232, ¢, =

2

¢; ' mod 2%2

Output: —a-2"*mod* g, —a- 27" mod* ¢

1:

2:

mul t, ap, ¢}

mul to, ag, ¢

neg ., a;

smmla ag, {1, qq, aq

smmla ay, s, g2, 0

i return ag, a;




4.2.1 Optimized Polynomial Multiplication *%&"

0 NTT for negative polynomials

» The proposed negative double Montgomery reductions produce negative of the correct
results.

» The linearity of NTT computations ensures that NTT(-x)=-NTT(x). Therefore, it will not
affect the correctness of the NTT computations.

Property 2 (Linecarity of NTT [5]). Let a,b € Z,, and let x and y be polynomials
in the polynomial ring R, such that NTT(x) =& and NTT(y) = y. Then, the NTT
satisfies: NTT (ax + by) = ax + by.

(1 The optimized 32-bit NTT/INTT implementations

» The 3+3+3 layer merging strategy is used for the 9-layer NTT in Raccoon.
» Lazy reduction is comprehensively used to reduce unnecessary modular reductions.
Only INTT with CT butterfly needs modular reductions for 64 coefficients modulo

91, 92-




4.2.2 Optimized Raccoon Masking Gadgets %%

O Lazy reduction for Raccoon’s masking gadgets

» We thoroughly reduce the conditional additions/subtractions in Raccoon masking
gadgets: ZeroEncoding, Refresh, AddRepNoise, and Decode.
» We carefully analyze the output range of these gadgets and ensure a correct Raccoon

implementation.

Table 5.2: Complexity reduction and output range using the lazy reduction

# of conditional operation

Output range (absolute value)

ZeroEncoding 2nd - log(d) q - log(d)
nd + 2nd - log(d) || + ¢ - log(d)
Refresh
2nd + 4nd - log(d) 2| + ¢
AddRepNoise nd - rep || + rep (2" + ¢ - log(d))
n-(d—1) d- |z
Decode
2n - (d — 1) d - |
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4.3 Lightweight High-order Raccoon 7)%

[ Streaming the matrix-vector multiplication

» Streaming the matrix A: save 80 KiB, 140 KiB, and 252 KiB of memory for Raccoon-
128, Raccoon-192, and Raccoon-256.

» Streaming the masked vector [[r]: reduce 4(I — 1)d KiB of memory.
» Other memory reuses: reduce 8k + 41 KiB of memory.

:(}

| 1t

(a) The reference implementation (b) The proposed implementation

Figure 5.1: The matrix-vector multiplication implementations of Ax|r]|=]w]| in

the sign of Raccoon




. e,
4.3.1 Results and Comparisons -

!
O Polynomial arithmetic results on Cortex-M4
» The NTT and INTT are 2. 54 X and 3.98 X faster than the reference implementation.
» The polynomial left- and right-shift are 3. 25 X and 2.93 X faster.
Table 5.3: Cycle counts (cc) of the polynomial arithmetic of Raccoon-128 on
Cortex-M4.
Split Join  NTT  INTT Left-shift Right-shift Add Addqg®
Ref. [94] 9795 22613 118455 171670 12371 14420 7236 10835
This work 6231 (5718) 13908 46677 43026 3801 4942 5970 9047
Ref/This work 1.57 x (1.71x) 1.63x 2.54x  3.98x  3.25x 293%  1.21 x (1.81x) 1.20x

“Addq denotes the polynomial addition with conditional subtraction of ¢.
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4.3.1 Results and Comparisons Ao

] Masking gadgets results on Cortex-M4

» The lazy reduction strategy in the masking gadgets results in 1. 38 X to 2.61X
speedups, which further improve the performance of Raccoon.

Table 5.4: Cycle counts (cc) of the masking gadgets of Raccoon-128 on Cortex-M4.

ZeroEncoding AddRepNoise Refresh N'I'l' Refresh Decode N1l Decode

Ref. [94] 3643 1621694 55 53 7228 7228

= This work 3643 2838159 55 53 7227 7228
‘ Ref. [94] 19377 4785073 40878 68634 10836 14937

=2 This work 14005 2941116 25776 36666 0972 5714

Ref. [94] 100749 4909375 144062 199455 32423 44725 B

=t This work 71581 3028599 95438 117095 17827 17059
Ref. [94] 326040 17286545 4621694 523182 75590 104296

= This work 230879 11084177 278300 321628 41534 39743
. Ref. [94] 900440 17783937 1073626 1294684 161901 223416
=1 This work 636435 11434030 731780 826092 88926 85086
, Ref. [94] 2297856 73123134 2644266 3086391 334528 161657
= This work 1622473 47134002 1813245 2001820 183711 178759
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4.3.1 Results and Comparisons o

(J Raccoon results on Cortex-M4

Table 5.5: Cycle counts (cc) and stack usage (Bytes) of keygen, sign, and verify

of Raccoon on Cortex-M4. Averaged over 1000 iterations.

» The proposed implementations

Raccoon-128 ¢ Raccoon-192 Raccoon-256
0 0 Implementation
reduce 32.46 /0~40.01 /0 Of keygen sign verify | keygen sign verify | keygen sign verify
the ClOCk CYCICS compared tO 29073k | 65719k | 21851k | 45518k | 94450k | 35862k | 73878k | 124020k | 60837k
Ref.[94
5 f (o4 83232 | 230752 | 111960 | 107864 | 290815 | 144800 | 140704 | 505320 | 185832
d=1
Raccoon S rererence 19637k | 39628k | 13226k | 30044k | 56658k | 21460k | 47631k | 79214k | 36098k
. . This work
lmplementatlon. 82584 | 230104 | 111248 | 107232 | 332568 | 144152 | 140040 | 504664 | 185184
35245k | 72595k | 21851k | 53705k | 103777k | 35858k | 85407k | 136329k | 60839k
Ref.[94
194 112008 | 284064 | 111960 | 140744 | 394720 | 144800 | 181660 | 583208 | 185832
d=2
» The pI’OpOSCd memory 22077k | 43196k | 13226k | 34448k | 61533k | 21458k | 53854k | 85741k | 36097k
This work
optimizations enables the 111360 | 283424 | 111312 | 140096 | 394080 | 144112 | 181120 | 574328 | 185184
46043k | 85151k | 21849k | 68019k | 108992k | 35859k - - -
L3 L3
- Ref.[94
praetlcal use Of hlgh Ol'del' (o4 164328 | 377292 | 111944 | 201180 | 504332 | 144800 - - -
d—=14
Raccoon, namely Raccoon- r | 2SS0k 0052k | 18226k | 42113k | GTAGHK | 21400k | G766k | 216313k | 36194k
1S Wor
. 164352 | 262143 | 111312 | 201172 | 504324 | 144152 | 192956 | 381444 | 185184
128 with d = 16, Raccoon-
111445k | 199892k | 21852k - - - - - -
: — Ref.[94
192 Wlth d = 8, and Raccoon- 194) 262636 | 299007 | 111960 - . - . . :
. d=28
256 Wlth d — 4 8 on the 76364k | 120326k | 13226k | 105337k | 295197k | 21447k | 150611k | 969455k | 36193k
) This work
12636 HHT6( : 36 He : 96 5046 H1¢
1 t d 1 t f 262636 | 557604 | 111312 | 266848 | 488072 | 144152 | 344696 | 504648 | 185192
SClcClica platrorm.
Ref.[94]
d =16
100786k | 436475k | 13284k
This work
426492 | 611648 | 111320

“The first row of each entry indicates the cycle count and the second row refers to stack usage.
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5.1 Conclusions NS

 Theoretical improvements: Improved Plantard Arithmetic
» We proposed an improved Plantard arithmetic tailored for LBC.

» It has excellent merits over the original Plantard, Montgomery, and Barrett arithmetic.

] Implementation improvements: Efficient, lightweight and secure LBC
» We explored various optimizations for the improved Plantard arithmetic, NTT,
Keccak, Kyber, NTTRU, Dilithium and side-channel secure masking-friendly
Raccoon implementation on three IoT devices.
» All implementations are open-source and some of them have been merged into the
NIST’s official repository pqm4.
» https://github.com/UIC-ESLAS/ImprovedPlantard Arithmetic
> https://github.com/UIC-ESLAS/Kyber RV_M3
> https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli

> https://github.com/JunhaoHuang/pgm4



https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic
https://github.com/UIC-ESLAS/Kyber_RV_M3
https://github.com/UIC-ESLAS/Dilithium-Multi-Moduli
https://github.com/JunhaoHuang/pqm4
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Thanks for listening!
Look forward to interesting

questions and discussions!
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