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1 Introduction
Cloud computing platforms facilitate the development ofmachine learning applications by providing
scalable, flexible, and cost-efficient infrastructure, along with tools and services that streamline
the entire ML pipeline [1–3]. As a result, machine learning applications running in the cloud may
involve models, client input data, and compute resources originating from different entities [46, 51].
However, entities may have privacy concerns and prefer to keep their data confidential from
others [35]. For example, clients wish to keep their input data private from both the cloud server
and the model provider, while the model provider seeks to safeguard the model’s structure and
weights from external exposure [35]. Preserving privacy is especially critical in domains such
as finance (banking details), healthcare (patient information), government (citizen data), retail
(customer information), and the workplace (employee data) [18, 27, 42, 45]. Machine learning
services in these areas particularly rely on interpretable models for tabular data [26], such as
decision trees [47] and tree ensembles like random forests [11] and gradient boosting trees [25].

The critical need to protect sensitive data in multi-party computations requires efficient secure
machine learning protocols integrated with privacy-preserving techniques. Traditional cryptosys-
tems like RSA or AES fall short because they require compute servers to decrypt data before
processing, exposing it to potential breaches. To address these challenges, fully homomorphic
encryption (FHE) [4] offers an attractive solution. FHE allows arbitrary computations directly on
encrypted data without decryption, providing strong security [9, 28, 41, 48]. This enables compute
servers to process encrypted data and produce encrypted results. FHE eliminates the need to trust
cloud hardware, keeping data secure even if servers are compromised.

State-of-the-Art. While FHE can be used for certain machine learning models [23, 30, 39], applying
it to tree ensembles remains challenging due to two main reasons: First, tree traversal, which is the
fundamental operation in decision tree inference, is challenging to implement using homomorphic
additions and multiplications. Second, tree inference involves irregular memory accesses and serial
control flow, whereas FHE operations are typically executed in a parallel SIMD (Single Instruction,
Multiple Data) fashion [14]. These challenges complicate the efficient adaptation of FHE for tree
ensemble inference. To address these issues, COPSE [38] was proposed as the first FHE-based
three-party secure inference system for tree ensembles. COPSE overcomes the challenges by
transforming trained tree ensemble models into vectorized representations composed of vectors
and matrices, enabling the use of matrix-vector multiplication for tree traversal. This approach
aligns well with FHE operations and allows for parallelization. By encoding both the model and
data as homomorphically encrypted vectors and matrices, COPSE enables secure computations on
untrusted servers without privacy leakage.

Motivation. We systematically analyzed the COPSE system and observed that computing matrix
operands within vectorized models predominantly increases its runtime computation and memory
consumption. We identified two key reasons for these inefficiencies. First, the runtime performs
multiple instances of matrix-vector multiplication over homomorphically encrypted data–one of the
most time-consuming operations in FHE–which significantly slows down the evaluation. Second,
each row of these matrix operands represents the tree structure in one-hot encoding. As the tree
ensemble model grows, these matrices expand substantially, causing excessive memory usage and
limited scalability. To address these inefficiencies, we propose two techniques: (1) Compile-time
Precomputation and (2) Runtime Batching, and integrate them into our system VESTA.
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Compile-time Precomputation. The key insight behind this technique is that complex computa-
tions performed in the COPSE runtime can be precomputed in plaintext during the compilation
phase, rather than over ciphertexts at runtime. Specifically, COPSE runtime performs encrypted
matrix-vector multiplications continuously as 𝐴 × (𝐵 × 𝑣), where 𝐴 and 𝐵 are both matrices in the
vectorized model while 𝑣 is an intermediate vector variable. In contrast, we can precompute the
product𝑈 = 𝐴 × 𝐵 during compilation in plaintext so that the runtime computation can be reduced
to a single encrypted matrix-vector multiplication𝑈 × 𝑣 . This precomputation not only eliminates
one expensive matrix-vector multiplication at runtime but also decreases memory consumption by
eliminating one matrix operand in the vectorized model.

Runtime Batching. Our key insight is that partitioning large tree ensemble models into smaller
sub-models and batch-processing these at runtime can reduce the total memory footprint and
decrease overall evaluation time by exploiting task parallelism. Specifically, in vectorized models,
matrices encode the tree structures using one-hot encoding for each row. As the number of trees in
the model increases, the size of these matrices grows quadratically with many redundant zeros—
wasting computational resources and memory. By partitioning the tree ensemble into sub-models
and processing them in batches, we effectively reduce the dimensions of the matrices, eliminating
many of these redundant zeros. This leads to a smaller compiled vectorizedmodel and lowermemory
consumption during runtime. Moreover, since each sub-model can run independently, runtime
batching leverages task parallelism to speed up the inference process on multi-core processors.
Overall, Runtime Batching reduces inefficiencies from one-hot encoding and boosts performance
via parallelism, enhancing the scalability and efficiency of FHE-based tree ensemble inference.

Contributions. To the best of our knowledge, our proposed VESTA system is the most advanced
FHE-based three-party secure inference system for tree ensemble models, offering the fastest
evaluation speed and reduced memory consumption compared to existing systems, with the same
level of security. Our contributions can be summarized as follows:

• We determined that one of the most time-consuming runtime computations could be precom-
puted at compilation time in plaintext, thereby reducing the runtime overhead by eliminating
one matrix-vector multiplication. (Section 4)

• We observed that processing encrypted one-hot-encoded matrices of the trees requires exces-
sive memory and redundant computations due to their sparsity. Therefore, we partitioned
the model to reduce redundant zeros and enhance memory utilization. (Section 5)

• Our optimizations are integrated to VESTA. Compared to the state-of-the-art COPSE system,
VESTA achieves an average speedup of up to 2.06× and a 59.4% reduction in memory usage.
(Section 6 and Section 7)

2 Background and Preliminaries
2.1 Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) [4] is a privacy-preserving technology that enables compu-
tations on encrypted data. Specifically, under an FHE scheme, performing operations on ciphertexts
and then decrypting them yields a result equivalent to performing the same operations on corre-
sponding plaintexts. This property can be expressed as Dec (Enc(𝑎) op Enc(𝑏)) = a op b where 𝐸𝑛𝑐
represents encryption, 𝐷𝑒𝑐 represents decrption, and 𝑜𝑝 stands for addition and multiplication.
However, FHE has two limitations: high computation overhead and large memory usage. First,

the compute time required for homomorphic operations on ciphertext is significantly greater than
that for corresponding plaintext. Second, conducting homomorphic computations usually results
in a notably large working set [5], so the memory consumption of executing an FHE-based system
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(a) Without ciphertext packing (b) With ciphertext packing

Fig. 1. Difference in computation and working set of inner product computation over homomorphic encrypted
data with and without ciphertext packing technique

is substantially larger than the corresponding plaintext version. Therefore, an FHE-based system
necessitates optimization technique in terms of computation overhead and memory utilization.

2.2 Ciphertext Packing
Ciphertext packing [14] is a memory and computation optimization technique widely used in
FHE-based systems. Ciphertext packing creates a ciphertext as a vector packed with multiple
values. Computations on packed ciphertext is equivalent to pairwise computations on each value.
This allows a SIMD-like vectorized computation approach. When computations within a FHE-
based system can be effectively vectorized in a SIMD fashion, the utilization of ciphertext packing
can alleviate memory usage constraints and reduce computational complexity. Unlike vectorized
computaiton in plaintext, direct indexing to access an encrypted value stored within a packed
ciphertext is not supported. Additional operations, such as rotation or multiplication by a
reorder matrix, are required to manipulate its contained encrypted value.

Figure 1 illustrates the impact of ciphertext packing on the working set size and computational
complexity when calculating the inner product of vectors 𝑎 = [𝑎0, 𝑎1, 𝑎2, 𝑎3] and 𝑏 = [𝑏0, 𝑏1, 𝑏2, 𝑏3].
When examining binary operations within a naive implementation (Figure 1(a)) in an FHE-based
system, every input value (i.e. 𝑎𝑖 , 𝑏𝑖 ) and intermediate result (i.e. 𝑐𝑖 ) is encrypted or stored within
a ciphertext. Therefore, a total of 15 ciphertexts are utilized during the computation of a homo-
morphic inner product operation. Furthermore, by considering the binary operators involved, the
homomorphic operations required in a naive implementation consist of 4 multiplications and 3
additions. By utilizing ciphertext packing to pack operand vectors into a single ciphertext and per-
form computations between packed ciphertexts (Figure 1(b)), it is observed that only 7 ciphertexts
are required. Additionally, the necessary computations consist of 1 multiplication, 2 additions, and
2 rotations. It is worth mentioning that rotation is a specialized operation for packed ciphertext,
with a computational cost higher than addition but comparable to multiplication. Furthermore,
operations on ciphertexts under the same FHE setting have the same time complexity, regardless of
whether ciphertext packing is utilized or not. Therefore, ciphertext packing effectively reduces the
size of the working set and the number of required homomorphic encryption operations.

2.3 Decision Tree and Tree Ensemble Models
Decision tree. Figure 4 (a) depicts an example of a decision tree. A decision tree comprises two

types of nodes: internal nodes and leaf nodes. At each internal node, a feature of the input feature
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vector is compared against the node’s threshold. Each leaf node includes a label denoting the
predictive result of the input sample. The inference of a decision tree starts from the root and ends
at a leaf node. A decision is made based on the comparison of a feature with the node’s threshold.
Depending on this decision, either the left or right child node is evaluated in a similar manner. This
recursive process continues until a leaf node is reached. The label within the leaf node serves as
the output of the model. In Figure 4(b), a running example of decision tree inference is illustrated.
In the case of our trained decision trees, the nodes are re-arranged such that the left child node,
namely false branch, corresponds to the branch to be evaluated when the decision is false, while
the right child node is the true branch. Through the recursive evaluation, the leaf node with label
𝐿2 is eventually reached with input feature vector [𝑥,𝑦] = [3, 6] (Fig. 4 (b)).

Tree ensemble models. In general, tree ensemble models [24, 40] combine the inference results
generated by multiple decision trees to enhance generalizability and robustness compared to a
single decision tree model. The two predominant tree ensemble models commonly utilized are
gradient-boosted decision trees [25] and random forests [11]. Given that the primary distinctions
among different tree ensemble models lie in the manner in which individual decision trees are
trained, the resultant models exhibit the same behavior in inference.
The inference process of tree ensemble models comprises two stages: the individual inference

of each decision tree and the combination of their predictions. The combination step involves
executing a reduction operation to derive the output based on the predictions of each tree. Typically,
a majority voting technique is employed, where the label predicted by the majority of decision
trees is designated as the final output.

2.4 Three-party Privacy-preserving Tree Ensemble Model Inference
Recent research [7, 38, 57] has established a three-party privacy-preserving tree ensemble model
evaluation framework, in which the three computation participants are identified as the model
owner, data owner, and compute server. Throughout the collaborative computation process, the
fundamental configurations of these participants are outlined as follows.

Three parties. The model owner possesses the trained tree ensemble models. The features
included in the trained models, along with all potential inference result labels, are considered public
information and therefore known to all parties. However, the tree structure and specific threshold
details are regarded as confidential model information.
The data owner possesses the input data that requires evaluation utilizing the trained tree

ensemble models. The features present in the input data are identical to those in the models, making
them public. However, the specific values of the input data should be kept confidential.
The compute server does not possess any input data, but rather the computational resources

that enable the model owner and data owner to offload the inference computation to it. Acting
as an honest-but-curious adversary [44], the compute server adheres to the underlying privacy-
preserving protocol while attempting to learn all feasible information during its computations.
In a secure system, the compute server should have no access to any confidential information
pertaining to model privacy or data privacy.

Our goal of privacy. The core security consideration under a three-party scenario is to keep the
model privacy as well as data privacy while offloading the computation to the honest-but-curious
server. The model privacy of a tree ensemble model encompasses two key aspects: node and
structure [57]. Specifically, model node privacy refers to the protection of which feature is used
and threshold value stored in the internal nodes, as well as the predicted values stored in the leaf
nodes.Model structure privacy, also known as path privacy, involves safeguarding the entire
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path from the root to each leaf node while traversing the tree structure to generate the inference
result. In three-party scenario, a system with model privacy should prevent compute server learn
anything confidential from the encrypted tree ensemble model representation. Simultaneously, the
data owner should not infer any sensitive information about the model based on the output result.

Data privacy involves protecting both the input feature vector and the output inference result. In
three-party scenario, a system with data privacy should prevent the compute server from learning
sensitive information from the data owner’s input feature vector and the output inference result.

FHE-enabled three-party secure inference system. FHE has garnered interest in cloud computing,
especially in the domain of MLaaS, where the three-party secure inference system is required.
By applying FHE, both the model provider and data owner can utilize the compute resources of
cloud servers without trusting either the servers themselves, their underlying hardware, or even
their CPUs. Compared to other secure computation techniques like oblivious transfer [47] and
secret sharing [56] , FHE-based systems are acknowledged for offering the highest level of security.
Besides, FHE is complete where any complex computation that can be broken down into addition
and multiplication operations can be designed into an FHE circuit. A naive implementation can be
accomplished by encrypting each operand into a ciphertext and utilizing homomorphic addition
and multiplication to perform computations as if operating on their plaintext versions.

Challenges in designing FHE-enabled three-party secure evaluation systems for tree ensembles.
Implementing a secure and efficient FHE-based three-party secure evaluation system for tree
ensembles is challenging due to its inherent incompatibility of FHE adaptation, and the stringent
privacy constraints present in a three-party setting. Unlike other machine learning models such as
neural networks [41], support vector machines [9], or unsupervised learning models [28], which
rely on mathematical computations that can be easily converted into homomorphic additions and
multiplications, the evaluation of tree ensembles involves operations that are FHE-unfriendly,
specifically comparison and tree traversal. This necessitates a careful and innovative design to
support these computations.
Additionally, existing systems [6, 19, 36, 58] are primarily designed to offer privacy-preserving

tree aggregation evaluation protocols within a two-party setting, wherein either the data owner or
the model owner possesses their own computational resources and functions as the compute server.
In a two-party setting, it is sufficient to protect either data privacy or model privacy, as the other
is not at risk of leakage. A three-party setting imposes significantly higher privacy-preserving
requirements compared to a two-party setting, which complicates the direct adaptation of two-party
systems to three-party systems. These two challenges render the design of an FHE-based three-party
secure evaluation system for tree aggregation models a valuable research topic. Otherwise, such
simple, useful, and interpretable models cannot be employed when conducting privacy-preserving
computations with an untrusted computation server.

3 Motivation and VESTA System Overview
This section provides an overview of our VESTA system design. We will start by revisiting the
state-of-the-art COPSE system and analyzing its inefficiencies in computation and memory usage.
Subsequently, we will discuss how our VESTA system addresses these inefficiencies.

3.1 Revisit the State-of-the-Art
COPSE system [38] is the state-of-the-art FHE-based three-party privacy-preserving tree ensemble
inference system. The COPSE system vectorizes operations required for the inference of tree
ensemble model. Through ciphertext packing, its approach results in significant speedup compared
to prior works [7, 13].
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COPSE system infers tree ensemble models through the following four steps: First, COPSE
system organizes all threshold values present in the tree ensemble models, along with input feature
values, into vectors. It then utilizes the packed ciphertext property to enable a single comparison
operation to obtain all decisions across the tree ensemble models. Secondly, COPSE system will
select and arrange the comparison results of each feature against each threshold to its corresponding
tree. The third step is the core of the inference process. COPSE system conducts a level-by-level
tree traversal by selecting the comparison results of the current level from the results of the second
step. It then moves to either the true branch or false branch based on the decision value. Since
all operations are vectorized during the level-by-level tree traversal, the fourth step involves
conducting accumulation operations to obtain the inference result from each level result.

To implement the aforementioned four steps, COPSE system conducts a co-design of the COPSE
compiler and COPSE runtime. The scheme of the COPSE system is shown in the left half of Figure 2.
The COPSE compiler (Top left part of Fig. 2: COPSE Compiler) is deployed on the model owner’s
computer, namely, Maurice’s computer. The COPSE compiler takes a trained tree ensemble model
as input and compiles all the necessary information of the models during the inference process
into vectors and matrices, creating a vectorized COPSE model. Specifically, for a trained tree
ensemble model with 𝑑 levels, the compiler prepares for the following four data structures:

(1) A vector containing all threshold values from the internal nodes of the trained tree ensemble
model, known as the threshold vector (Thresh);

(2) A reorder matrix that selects each tree’s decisions in the second step, referred to as the
reshuffle matrix (Reshuf);

(3) 𝑑 reorder matrices to select each level’s decisions, known as the level matrices (Lvls);
(4) 𝑑 bit-vectors to store the true branch and false branch information of each level, referred to

as the level masks (Masks).

Moreover, Maurice needs to guide the data owner, Diane, to organize Diane’s input data features
into a vector, known as the feature vector (Feats), where Thresh and Feats should establish a
one-to-one relationship, allowing for an element-wise comparison between them.
Besides, the COPSE runtime (Bottom left part of Fig. 2: COPSE Runtime) is deployed on the

compute server (Sally). After receiving the homomorphically encrypted vectorized COPSE model
from Maurice and the feature vector (Feats) from Diane, Sally runs the COPSE runtime to conduct
the four-step operations to infer the results. Specifically, the first step, comparison, is to use a
secure comparison protocol over homomorphically encrypted data to compare the Feats against
the Thresh. The second step, reordering, is to utililize a matrix-vector multiplication with Reshuf
to arrange and select decisions corresponding to each tree. Next, the third step, level processing,
is to perform tree traversal level by level. This includes using a vector-matrix multiplication with
each level’s Lvls to obtain the decisions at that level, followed by a vector addition with that
level’s Masks to distinguish true and false branches. The last step, accumulation, entails using
a point-wise multiplication to aggregate each level’s results into the final result. This results in
a vector known as the label vector (Labels) that stores the encrypted one-hot inference result,
indicating which leaf node has been reached. The Labels will then be sent back to Diane. After
decryption, Diane will know the inference result.

3.2 Inefficiencies of COPSE System and Our Key Insights
During the preliminary experiment while reproducing the COPSE system, it was observed that
running the COPSE system led to excessive memory usage and slow evaluation. Upon further
characterization, it was identified that the computation steps involving matrix-vector multiplication
with the reorder matrix had an excessive working set size and were the computation bottleneck. A

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 1, Article 14. Publication date: March 2025.



14:8 Haosong Zhao et al.

Model Owner - Maurice
Source

𝑦 < 5

𝑥 < 4 𝑥 < 3

𝑥 < 8

𝑦 < 2 𝑦 < 5

Trained tree ensemble model

COPSE Compiler 
M
as
ks

LvlsReshuf

Th
re
sh

Vectorized COPSE model

M
as
ks

ULvls

Th
re
sh

VESTA Compiler 

M
as
ks

ULvls

Th
re
sh

M
as
ks

ULvls

Th
re
sh

Compile1 Partition

Partitioned vectorized VESTA model

For large model

Vectorized VESTA model

Data Owner - Diane

Feats

Raw data

Feature vector

Source

Arrange data
(Follow Maurice Guidance)

1 1

Compute Server - Sally

𝑥 𝑦

𝑖𝑡𝑒𝑚1 3 6

… … …

Encrypt and send to Sally2 Encrypt and send to Sally2

2 Encrypt and

send to Sally

2 Encrypt and

send to Sally

COPSE Runtime VESTA Runtime 

Feats

Thresh
SecComp

Step 1: Comparison

LvlResults[i]MulAll

Step 3: Accumulation

LvlResults[i]MulAll

Step 4: Accumulation

Feats

Thresh
SecComp

Step 1: Comparison

Reshuf ×

De
ci
si
on

s

Step 2: Reordering

+ ×

Br
an

ch
esLvls[i]

Lvls[i]
Lvls[i]
Lvls[i]

M
as
ks
[i]

Step 3: Level processing

+ ×

De
ci
si
on

s

Lvls[i]
Lvls[i]
Lvls[i]
ULvls[i]

M
as
ks
[i]

Step 2: Level processing

H
om

om
orphicly com

pute

3 H
om

om
orphicly com

pute

3

Labels Label vector
Get result4 Get result4

(For partitioned model) Merge subresults

Result
Decrypt Labels

Send to Diane and decrypt5 Send to Diane and decrypt5

𝑦 < 5

𝑥 < 4 𝑥 < 3

𝑥 < 8

𝑦 < 2 𝑦 < 5

𝑦 < 5

𝑥 < 4 𝑥 < 3

𝑥 < 8

𝑦 < 2 𝑦 < 5

Compiler input

Compiler input Partitioned model

𝑥 < 8

𝑦 < 2 𝑦 < 5
𝑦 < 5

𝑥 < 4 𝑥 < 3

𝑦 < 5

𝑥 < 4 𝑥 < 3

𝑥 < 8

𝑦 < 2 𝑦 < 5

VESTA Partitioner 

Partitioner input

Compile1

Fig. 2. Evaluation process of trained tree ensemble models by model owners, computer servers, and data
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brief introduction to two inefficiencies we found restricting the performance of the current COPSE
system and a discussion about our proposed solutions are outlined below.

Consecutive matrix-vector multiplication with reorder matrices known during compilation time.
The COPSE system involves two steps: reordering and level processing, both of which entail matrix-
vector multiplication using the reorder matrix to select relevant decisions from the comparison
results. Methodologically, decisions are initially selected and organized for each tree during the
reordering step, followed by selection and arrangement for each level in the level processing
step. One might assume that selection could be accomplished by directly accessing indices in the
vectors. However, this is not feasible due to the limitations of ciphertext packing. As a result, two
matrix-vector multiplications with reorder matrices are required to execute the two-step selections.
However, by directly selecting each level’s decisions from the comparison results, only one selection
operation is necessary.
Furthermore, mathematically speaking, the implementation of these two steps involves first

multiplying the Reshuf matrix by the comparison results (decision vector, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠), and then
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Fig. 3. An example of quadratic expansion of reorder matrix with operand vector size growth

multiplying the Lvls matrix by the resultant product of the previous multiplication. Consequently,
the entire computational process for 𝑖-th level can be represented as “Lvls[𝑖]×Reshuf×Decisions”.
Since the Reshuf and Lvls matrices are data structures of the vectorized COPSE model, known
during the compilation process, it is advisable to perform their multiplication in the one-time
compilation process rather than computing them at runtime using expensive homomorphic oper-
ations repeatedly. In summary, our initial optimization insight is to precompute the consecutive
reorder matrix multiplication during compilation time to reduce one high-complexity runtime
matrix-vector multiplication over homomorphically encrypted data.

Quadratic expansion of reorder matrix with model size growth. The COPSE system typically
compiles each trained tree ensemble model into a single vectorized COPSE model. However, the
size of the vectorized model will significantly increase as the model size grows due to the quadratic
expansion of reorder matrices involved.
Figure 3 illustrates that when the size of the vector to be reordered increases by 1, the reorder

matrix has to increase by a new column and a new row. Therefore, in our scenario, the reorder
matrix grows quadratically in size as the number of tree nodes increases. As each row in a reorder
matrix can have at most one non-zero value, the reorder matrices within the vectorized COPSE
model compiled from large tree ensemble models will be excessively large and filled with numerous
meaningless zeros. While those zeros could have been skipped considering the sparsity, as the
matrices are encrypted, it is not feasible to leverage the sparsity. Thus, we consider to partition the
large trained tree ensemble model into several sub-models. The benefits of doing it are two-fold:
First, this approach ensures that the reorder matrices within the vectorized COPSE sub-models will
have a smaller total size compared to the original model. Second, since the evaluation of sub-models
is independent, partitioning the model introduces task-level parallelism that is inherent in ensemble
models. In summary, our second optimization insight is to partition the large trained tree ensemble
model and batch the inference process to improve memory and computation efficiency.

3.3 VESTA System
In response to the two inefficiencies mentioned earlier, we propose the VESTA system, a fast
and memory-efficient three-party FHE-based secure inference system for tree ensemble models.
Following a similar inference methodology as the COPSE system and combining the optimization
techniques of precomputation and partitioning, our VESTA system also consists of a compiler and
a runtime. In addition, we initially introduce a partitioner pass into our VESTA compiler design.

The scheme of VESTA system is shown in the right half of Figure 2. The VESTA compiler (Top
right part of Fig. 2: VESTA Compiler) is deployed on Maurice’s computer. When the trained tree
ensemble model is received, VESTA compiler assesses the necessity for partitioning. In cases where
large models require partitioning, VESTA compiler partitions the trained tree ensemble model into
multiple sub-models in the VESTA partitioner pass (Top right part of Fig. 2: VESTA Partitioner).
Next, VESTA compiler compiles the model or sub-models into vectorized VESTA model(s).
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During the compilation process, the optimization technique of precomputation is applied. As a
result, the vectorized VESTA model contains only three data structures: Thresh, ULvls, and Masks.
Note that Thresh and Masks remain the same as COPSE. The unified level matrices (ULvls) are
the precomputation result, where ULvls[𝑖] =Lvls[𝑖]×Reshuf for the 𝑖-th level.
With the vectorized VESTA model containing precomputed results, the VESTA runtime (Bot-

tom right part of Figure 2: VESTA Runtime) deployed on the Sally server only requires three
computation steps. By utilizing the precomputed ULvls, the two consecutive matrix-vector multi-
plications carried out in both COPSE reordering and level processing steps can be consolidated into
a single multiplication with ULvls within the VESTA level processing step. Therefore, the original
reordering step in the COPSE runtime is eliminated in the VESTA runtime, while the comparison
and accumulation steps remain unchanged.

For partitioned models, since the representation of vectorized models remains consistent, evalu-
ating a partitioned model is similar to evaluating multiple non-partitioned models concurrently. In
this scenario, Diane must generate Feats for each sub-model and then acquire the predicted results
(Labels) for each model. Subsequently, a reduction operation, like majority voting, is performed by
Diane to obtain the final result. Conversely, for Sally, each partitioned model operates in the same
manner as before, making it challenging to differentiate between evaluating several independent
models or evaluating a single large model that has been partitioned.

4 Compilation Process and Runtime Algorithm of VESTA System
In this section, we will delve into the technical details of the compilation process and runtime
algorithm of our proposed VESTA system. We will provide a detailed example of how to use the
VESTA system for conducting tree ensemble model inference. Following that, we will compare the
VESTA system with the COPSE system in terms of memory usage, computational complexity, and
security level.

4.1 Our Mechanism of Tree Evaluation Using VESTA System
Figure 4 illustrates a practical example of utilizing the VESTA system to perform tree ensemble
model inference. It is important to note that all vectors and matrices involved in the runtime
computation are encrypted in packed ciphertexts. For clarity and ease of comprehension, the
corresponding plaintext values are depicted in our example. We consider a tree ensemble model
comprising only a single decision tree (Figure 4(a)). When the input sample is 𝑋 = [𝑥,𝑦] = [3, 6],
the evaluation result of this model should be 𝐿2 (Figure 4(b)).

Featuring. Our approach organizes the threshold values of the internal nodes into a vector
Thresh. During runtime, Diane prepares for a feature vector Feats using the sample for prediction.
Each element in Feats must accord to an element in the Thresh such that the comparison results
between features in the sample and the threshold values in the internal nodes could be acquired by
an element-wise comparison.

Specifically, to organize the values in Thresh, our approach groups the thresholds by the feature
to be compared with (i.e. 3 threshold values compared against 𝑥 and 2 threshold values compared
against 𝑦, Figure 4(c)), and then sorts them by the preorder traversal order of the trees (Figure 4(c)).
To organize Feats vector, our approach duplicates each feature by the number of times it appears in
internal nodes among the whole model and arrange them following the same feature organization
order of Thresh (i.e. first 𝑥 , then 𝑦, Figure 4(c)).
In the bottom right of Figure 4(c), a special case is illustrated where Maurice deliberately adds

redundant values to obfuscate the actual number of nodes compared against a specific feature in
the current model for security reasons. As long as Maurice instructs Diane to organize the Feats
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Fig. 4. A working example of VESTA system, showing the computation step differences compared to the
COPSE system

vector with the same length and correct one-to-one mapping as shown in the top right of Figure 4
(c), the VESTA system will function properly.

Comparison. Diane passes Feats to the server (Sally) for evaluation. Sally compares Feats with
Thresh using secure compare protocol. This results in a vector of evaluated 0 and 1 values, namely
𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 (Figure 4(d)). The values in the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 vector are then used for a level-by-level tree
walk from the root node to a leaf node.

Level Processing. Our approach implements the tree traversal process by constructing a one-hot
result vector that indicates the reachability of each leaf node. The width of this result vector is
the same as the number of leaves (𝑤 ). When a leaf node is reached, the corresponding element
in the result vector is set to 1. To successfully reach a leaf (i.e. 𝑙2, Figure 4(b)), all nodes along the
path from the root to that leaf must be reachable (i.e. nodes contain 𝑑0, 𝑑1, 𝑑3, Figure 4(b)). The
reachability of an intermediate node (𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠) is determined by two factors: the decisions made
at that node (i.e. 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 , Figure 4(e)), and whether its true or false branch should be traversed
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(i.e. Masks, Figure 4(e)). To obtain the leaf reachability, we perform a sequence of matrix-vector
multiplications and element-wise bit-vector additions.
First, we need to characterize “what” nodes could affect whether a leaf node could be reached.

Thus, we construct a bit-vector 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [i] of size𝑤 using the values stored in the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
vector for level 𝑖 . The 𝑗 th element in a 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [i] is 1 if whether leaf node 𝑗 could be reached is
determined by a comparison result of a node. For example, the reachability of leaf 𝐿1 is determined
by the comparison result of the node in level 0 (i.e. 𝑑0), the comparison result of the node in level 1
(i.e. 𝑑1), and the comparison result of node in level 2 (i.e. 𝑑2, Figure 4(e)). At runtime, constructing
𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [i] using values stored in the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 vector is implemented by multiplying the
reorder matrix ULvls[i] (Left part of Figure 4(g)).
Second, we must characterize “how” the evaluation results (𝑑𝑖 ) affect whether a leaf node is

reached. Specifically, the comparison result of an internal node drives the tree walk to go to the
left sub-tree or the right sub-tree, thus affecting whether a leaf node will be reached or not. In our
settings, the tree walk goes to a node’s right sub-tree if the comparison result is 1. Thus, we use an
additional Masks[i] bit-vector for each level 𝑖 . Specifically, for level 𝑖 , the 𝑗 th element in Masks[i] is
1 if the 𝑗th leaf node can be reached when the corresponding comparison results in 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠

[i][j] is 0 (Figure 4(e)).
Having the 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 bit-vectors and Masks bit-vectors, we compute the 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 [i] bit-

vector for each level 𝑖 by adding 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 and Masks. The result bit-vector 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 [i]
indicates the tree walk decisions in level 𝑖 , with the 𝑗th element showing whether the tree walk
will take the subtree that will reach leaf node 𝑗 .

Accumulation. Since each level is computed independently, to compute the result vector, we
conduct point-wise multiplication to reduce the 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 vectors into result vector, Labels. This
finishes the inference process of a single tree.

4.2 Comparison between COPSE and VESTA
This section presents a comprehensive comparison between our VESTA system and the COPSE
system demonstrating the advancements of our system in terms ofmemory usage and computational
complexity, while keeping the same security properties.

Key Difference to COPSE. Methodologically, our VESTA system and the COPSE system are
constructed using distinct inference algorithms. Specifically, after obtaining all comparison results
from the secure comparison protocol, the COPSE system performs a two-step selection process: it
first assigns each decision to its corresponding tree to enhance locality, and subsequently allocates
it to the appropriate node. In contrast, our VESTA system directly assigns each decision to its
corresponding node.
As for implementation, in contrast to our approach, which directly selects 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [i]

from 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 (Left part of Figure 4(g)), COPSE first arranges the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 into an intermediate
vector called 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 (Figure 4(f)), following the preorder tree traversal visiting order during the
reordering step. Subsequently, each level’s 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 [i] are selected from 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 during the
level processing step (Left part of Figure 4(h)). The arrangement and selection operations of these
two steps are carried out by multiplying with the reorder matrix Reshuf (Figure 4(f)) and Lvls[i]
(Left part of Figure 4(h)).

Some may question whether the lack of locality will diminish the performance of the VESTA
runtime. However, following partitioning with the VESTA partitioner pass (Section 5), which can
significantly enhance locality, any potential side effects can be mitigated.
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Fig. 5. Complete computation process for the 𝑖-th level’s 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 in two systems

Complexity Metrics. We compare both memory consumption and computation complexity with
COPSE using the size of the vectors and matrices contained in vectorized models. As previously
mentioned in Section 2.2, all system inputs and intermediate variables are encrypted into packed
ciphertexts, and all operations performed during runtime are executed through fixed-time [31]
vector-wise computations between these packed ciphertexts. Therefore, both memory consumption
and computational complexity are directly proportional to the size of the vectorized model, which
ultimately determines the number of packed ciphertexts utilized during runtime.

As for the components of vectorized models compiled by the two systems, their dimensions and
quantities are determined by three parameters of the corresponding tree ensemble models: the
internal node number (𝑏), leaf number (width,𝑤 ), and level number (depth, 𝑑).
It is important to note that Maurice can add an unlimited number of redundant values to the

Thresh to convert it into a length-𝑞 vector where 𝑞 is an arbitrary number larger than 𝑏. This
approach allows the actual numbers of a feature used to compare against among all nodes to be
hidden from Diane while organizing the Feats (i.e. In Figure 4(c), 𝑦 is actually compared twice
in current model, but Diane may perceive it as being compared with the thresholds of three
different nodes). However, this setup can lead to reduced computational efficiency as redundant
computations are carried out. In our analysis, we establish a standard setting where 𝑞 is equal to
𝑏, as we prioritize evaluating the model’s performance rather than enhancing the security level by
obfuscating the actual number of features being compared in the current model.

Size of the Vectorized Models. According to the working example shown in Figure 4, when working
on the same inference task with our standard setting, the vectorized model data structures, Thresh
and Masks, are the same for two systems. Specifcally, Thresh is a length-𝑏 vector (Figure 4(c)), and
Masks is a 𝑑 ×𝑤 matrix that stores 𝑑 levels’ length-𝑤 level mask vectors (Figure 4(g), (h) and (i)).
Besides, the shape of the reorder matrix that transforms a length-𝑢 vector into a length-𝑣 vector is
𝑣 ×𝑢. Thus, we can infer the shape of the reorder matrix contained in the COPSE system: Reshuf is
a 𝑏 ×𝑏 matrix (Figure 4(f)) and Lvls is a 𝑑 ×𝑤 ×𝑏 tensor that contains 𝑑 levels’𝑤 ×𝑏 level matrices
(Figure 4 (h)). As for the VESTA system, the ULvls matrix is a 𝑑 ×𝑤 × 𝑏 tensor that contains 𝑑
levels’𝑤 × 𝑏 unified level matrices (Figure 4(g)). Here, we can observe that even though the value
of Lvls in COPSE is different from ULvls in VESTA, they have the same shape. Therefore, we can
conclude that compared with COPSE, the compiled vectorized model of VESTA reduces a 𝑏 × 𝑏

matrix component with no other trade-off in size.

Comparisons in runtime computation complexity. We illustrate the difference between the COPSE
runtime algorithm and the VESTA runtime algorithm for computing each level’s 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 [i] in
Figure 5(a) and (b), respectively. To get all 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 , the computation conducted in the COPSE
runtime (Figure 5(a)) includes one-time invocation of the secure compare protocol of two length-
𝑏 vectors (Figure 4(d)), one-time multiplication between a 𝑏 × 𝑏 matrix and a length-𝑏 vector
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(Figure 4(f)), 𝑑 times multiplication of a 𝑤 × 𝑏 matrix and a length-𝑏 vector (Figure 4(h)), and 𝑑
times vector addition of a length-𝑤 vector (Figure 4(h) and (i)).
In the VESTA runtime (Figure 5), the difference is that it does not compute 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 but uses

another matrix operand ULvls and vector operand 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 to compute 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 (Figure 4(g)).
Considering that Lvls and ULvls have the same amount and size, our VESTA runtime has a
lower runtime computation complexity during this process compared to COPSE runtime since it
reduces one-time multiplication of a 𝑏 × 𝑏 matrix and a length-𝑏 vector with no other trade-off in
computation due to the compilation time precomputation.

After obtaining all 𝐿𝑣𝑙𝑅𝑒𝑠𝑢𝑙𝑡𝑠 , an accumulation operation is performed with𝑤 − 1 times point-
wise vector multiplication of length-𝑤 vectors (Figure 4(j), which remains the same for both COPSE
runtime and VESTA runtime.

Comparisons in inference accuracy. In general, under consistent precision for input data and
thresholds, evaluating the same model using the COPSE system and the VESTA system will yield
identical results to those produced by the original plaintext model. Consequently, the inference
accuracy of VESTA is equivalent to that of COPSE, both of which match the accuracy of the
originally trained model. Methodologically, both the COPSE and VESTA systems utilize an initial
comparison step to determine all decisions made at each node with respect to the current input
features. The subsequent steps simulate the tree traversal process, mapping these decisions to
the corresponding leaf nodes to identify which leaf is reached. Since the comparison step in both
systems is identical, and each system can utilize its own reorder matrices to select decisions and
map them to the appropriate leaf, the output Labels vectors will be the same. Additionally, the
properties of FHE ensure that operations performed on encrypted data are equivalent to those
conducted on the corresponding plaintext. Furthermore, encryption and decryption do not alter
the underlying values. As a result, the output of the secure compare protocol for both systems
will align with the comparison results obtained from the plaintext model. Consequently, both the
COPSE and VESTA systems demonstrate the same accuracy, which is equivalent to that of the
original model.

Comparison in Security Level. In general, the VESTA system possesses the same security properties
as the COPSE system, as it does not disclose any additional information compared to the COPSE
system and effectively safeguards both model privacy and data privacy. Specifically, from the
standpoint of information leakage, certain parameters related to the tree ensemble model may
be inadvertently revealed through the shape of vectorized model components. Consequently, the
parameters 𝑏 (internal node number),𝑤 (leaf number), and 𝑑 (level number) are inevitable to leakage
when utilizing the COPSE system. Since the components within the VESTA models have the same
shape as those with similar names in the COPSE models, no additional parameters will be leaked
from the VESTA system. Furthermore, all operations performed during VESTA runtime can follow
the same manner as those in COPSE runtime, thus no additional security risks are introduced. From
a privacy protection standpoint, the VESTA system encodes sensitive model structures, threshold
values, and input data values into encrypted vectors and matrices, and subsequently performs
fixed-time branch-less homomorphic computations to get an encrypted output. In this way, both
model privacy and data privacy are maintained under all circumstances.

5 Enabling Runtime Batching Through Model Partitioning
This section introduces how we designed the VESTA partitioner to reduce the memory footprint
and speed up the inference process. First, we will analyze the influence of partitioning on reorder
matrices in the vectorized model, and then we will discuss the design of the VESTA partitioner.
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5.1 Key Insight
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Fig. 6. Impact of Partitioning on the Reordering Matrix

As the vectorized model adapted FHE ciphertext packing does not support random access, one
needs to use reorder matrices to arrange values to new vectors. Hence, the inference of the tree
ensemble requires a number of reorder matrices as introduced in Section 3. For example, in VESTA
runtime, level processing uses reorder matrices ULvls to arrange evaluated values of internal nodes
stored in 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 into new vectors 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 (Figure 4(g)).
Figure 6 illustrates how partitioning affects the reorder matrices. As illustrated in Figure 6(a),

in the input vector of the COPSE reordering step (Figure 4(f)), the decision results contained
in 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 are organized based on the features used for comparison (i.e. compare with 𝑥0,
𝑥1, and then 𝑥2). However, the desired output vector of this step, 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 for COPSE runtime
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2 ], is structured according to the preorder tree traversal order, which

is determined by the tree structure. Consequently, the potential non-zero values will be distributed
across the Reshuf matrix. After partitioning, as shown in Figure 6(b), the potential non-zero values
are closely clustered in a specific area, allowing for a reduction in the size of the reordering matrix
by retaining only that specific area. The same effect occurs in the VESTA runtime algorithm, where
the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 vector is reordered into the 𝐿𝑣𝑙𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 vector.
In summary, partitioning improves the locality of tree ensemble model information stored in

vectorized model data structures, allowing for a reduction in reorder matrix size by only keeping
the area containing non-zero values.

5.2 Design of Partitioner
Observation. While considering the model partitioning process, the goal is to reduce the size of

reorder matrices contained in vectorized model to the largest extend. Based on our observation,
the ideal partition that minimizes memory usage and computation workload will divide the tree
ensemble model into exactly equal-sized halves. This type of optimal partition is referred to as
“sub-model balance”.
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Fig. 7. Influence of partition on VESTA runtime computation
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In Figure 7, we illustrate the influence of sub-model balance on reducing the size of reorder
matrices by considering the matrix-vector multiplication involved in the level processing step of the
VESTA runtime (Figure 4(g)). The green shaded area indicates that up to 50% of the original reorder
matrix can be reduced when the sub-models are of exactly the same size (Figure 7(b)). However,
if the partition results in unbalanced sub-model sizes (Figure 7(c)), the reduced area decreases.
Consequently, the partitioning of the tree ensemble model should strive to achieve sub-model
balance. As previously mentioned, the sizes of two systems’ reorder matrices, Reshuf, Lvls, ULvls,
are all related to internal node number 𝑏. Therefore, an optimal partition that achieves sub-model
balance can be determined by tallying the internal nodes in each decision tree and grouping them
into sub-models with equivalent total numbers of internal nodes.

How do We Partition? As illustrated in Figure 2, when a large, trained tree ensemble model is
provided to the VESTA compiler, the VESTA partitioner pass will perform partitioning on the
trained plaintext model before the compilation process. In the process of partitioning a tree ensemble
model comprising 𝑛 decision trees with 𝑏 nodes in total, into𝑚 sub-models, it is essential to achieve
sub-model balance. Consequently, each partitioned sub-model should contain approximately 𝑏

𝑚

nodes. Thus, the VESTA partitioner operates as follows: First, it processes the input models to
determine the number of nodes in each decision tree and the total number of nodes in the current
tree ensemble model (𝑏). Second, it groups the 𝑛 decision trees into𝑚 sets, ensuring that the total
number of nodes in each set is either exactly or closely approximates 𝑏/𝑚. Finally, it converts the
decision trees within each set into a sub-model.
To identify a set of decision trees with a total number of nodes close to 𝑏

𝑚
, due to the offline

preprocessing nature of the partition task, a grid search approach can be employed to test every
possible grouping result until a desired one is found. While this method guarantees a sub-model
balance partition, the preprocessing time may become prohibitively long as 𝑛 and𝑚 increase. In
practice, considering the typical training process of tree ensemble models and the interpretability
of decision tree models, we find that sizes of individual decision trees within the ensemble are
similar to each other. With this observation, a naive random partition algorithm can be proposed,
which randomly selecting 𝑛

𝑚
trees to form a sub-model. Although the naive algorithm may not

guarantee sub-model balance, empirically it yields a partition that is relatively close to the ideal one.
In our proposed experiments, the memory usage and computation time required for evaluating
a randomly partitioned model exhibit negligible differences when compared to those needed for
evaluating a partitioned model using the grid search method. Therefore, we have decided to utilize
this method in our VESTA partitioner pass.

Accuracy. It is worth mentioning that partitioning will not affect the accuracy of the partitioned
models. While evaluating a partitioned model, Diane will receive𝑚 Labels corresponding to each
sub-model. Since no modifications have been made to any decision tree, the evaluation results of
the sub-models will be a subset of the original model’s evaluation results. Therefore, the majority
voting outcome among all sub-results will remain unchanged.

5.3 How Many Sub-models do We Partition?
To support level processing, the minimal partition unit is a single decision tree contained in
the tree ensemble model. Therefore, the maximum number of sub-models equals to the number of
decision trees, where each sub-model contains one decision tree. The number of sub-models,𝑚, is
a hyper-parameter of the partitioner. The selection of𝑚 can be based on several aspects, including
memory, and security considerations. For example:
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Memory and Computation Performance. In general, an increase in the number of sub-models,𝑚,
leads to a reduction in both model size and runtime memory consumption due to the mathematical
properties of the reorder matrix. Therefore, to run an extremely large tree ensemble model on a
computer with limited memory, it is advisable to set a sufficiently large𝑚. Besides, tree ensemble
model partitioning also allows the server to exploit task-level parallelism as sub-models could be
inferences independently.

Security. As the partitioning occurs initially, no changes are made to the protocol. Thus, the
security level of a partitioned sub-model is equivalent to that of the original model. However, under
the partitioned model evaluation setting described in Section 3.3, Diane is required to prepare
input Feats and receive the corresponding output Labels for each sub-model. So, Diane will have
knowledge of the exact values of 𝑏 and𝑤 for each sub-model, as well as the value of𝑚. Fortunately,
none of this information will compromise the protection of model privacy or data privacy defined
in Section 2.4.

6 Evaluation Methodology
This section presents the evaluation methodology used to compare our VESTA with the state-of-
the-art COPSE system, focusing on computational and memory efficiency.

6.1 System Implementation and Discussion
Implementation of the VESTA Compiler and Partitioning Pass. The VESTA compiler processes

the original tree ensemble models and outputs vectorized models after performing compile-time
precomputations. A user-defined hyperparameter𝑚 (introduced in Section 5) controls the number
of sub-models generated by the partitioning pass. This partitioning pass is general and can be
embedded into either VESTA compiler or COPSE compiler; we will evaluate both configurations.

Implementation of VESTA Runtime. The VESTA runtime follows COPSE’s settings, using the
BGV scheme for FHE and HELib for homomorphic operations, with identical FHE configurations
and encryption parameters. We use SecComp [7] for secure comparison. To highlight VESTA
improvements, all computation kernels, such as matrix-vector multiplication and vector addition,
are identical to COPSE’s implementation. HELib’s BGV supports ciphertext packing, and NTL [54]
enables parallel computations for reductions and matrix-vector multiplication.

Generality of VESTA. The design of the VESTA system is highly flexible, supporting implemen-
tation in any programming language and with any FHE scheme. The VESTA runtime includes
SecComp, matrix-vector multiplication, vector addition, and point-wise multiplication, all imple-
mented using homomorphic addition and multiplication over scalar values. The partitioner pass
preprocesses the trained tree ensemble model, further enhancing flexibility. As a result, VESTA
operates more as a protocol than a fixed system, adaptable to various programs and FHE schemes.

6.2 Experimental Setup
Configurations. To evaluate the effect on utilizing parallelism in hardware, we use four exper-

imental configurations. Table 1 outlines the four evaluated configurations. The main difference
between the four schemes is whether multi-threading or multi-processing is enabled. Specifically,
the multi-threading execution is enabled using the NTL multi-threading execution to assign
the computation work contained in pre-defined kernels, such as matrix-vector multiplication,
to all available threads and perform parallel computation (i.e. data parallelism). Multi-process
execution assigns each sub-model (determined by the hyperparameter𝑚) to a separate process,
with each process bound to a distinct core, enabling task-level parallelism.
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Table 1. Description of the evaluated configurations

Setting Multi-threading Multi-process

S1 ✓ ✓
S2 × ✓
S3 ✓ ×
S4 × ×

Specifically, the S1 setting enables the use of all optimization techniques adapted in our VESTA
system, demonstrating the case when we exploit all available parallelism. The S2 setting exclu-
sively leverages task-level parallelism achieved through partitioning with multi-process execution,
highlighting the optimization facilitated by the VESTA partitioner. The S3 and S4 settings were
initially utilized in COPSE system evaluation.

Evaluation Methodology. We evaluate two key metrics: end-to-end execution time and peak
memory usage. For partitionedmodels with multi-process execution, wemeasure the total execution
time across all concurrently running processes. The memory footprint is captured by recording
the maximum resident set size across the entire computation process, including all sub-model
inferences.

Evaluated Models. The models used to evaluate the VESTA system contain all trained tree
ensemble models used in COPSE [38]. These models consist of two types: the synthetic models and
real-world models. The synthetic models vary in the number of levels, number of branches, and
the precision used for expressing thresholds. The real-world benchmark models are trained from
open-source machine learning datasets.

Hardware Platform. All experiments were performed on a 32-core, 2.0 GHz Intel Xeon Gold
6338 server with 1 TB of RAM. Each core has 1.25 MB of L2 cache, and all 32 cores share a 48 MB
last-level-cache (LLC).

7 Experiment Results
7.1 Speedup and Memory Optimization

Fig. 8. Average speedup and memory consumption reduction achieved by VESTA compared with COPSE
across the evaluated configurations
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Figure 8 illustrates the average speedup and reduction in memory consumption attained when
utilizing the VESTA system to evaluate all models with and without partitioning across aforemen-
tioned four settings. In general, the VESTA system enhances both computational and memory
efficiency when evaluating non-partitioned models across all four settings. For partitioned models,
the VESTA system can optimize memory and speed at the same time under settings S1, S2, and S4,
while striking a balance in setting S3 to notably decrease memory usage with a slight reduction in
speed. Here, we will briefly analyze how the VESTA system achieved these optimizations.

Effect of Compile-time Precomputation. Generally, the optimization presented here is attributed
to the VESTA runtime, which eliminates the reordering step present in the COPSE runtime without
any additional trade-offs. Specifically, the speedup achieved is positively correlated with the
time taken by the original reordering step. When multi-thread execution is enabled, a smaller
percentage of time is allocated to computing well-parallel matrix-vector multiplication compared
to SecComp and reduction-like operations. Therefore, the speedup is more pronounced in the S2
and S4 experiments.
Additionally, the reduced memory consumption is closely tied to the memory allocation for

the matrix operand Reshuf and the intermediate result of the original reordering step. The size of
Reshuf remains constant irrespective of the multi-thread setting, whereas multi-thread execution
leads to a higher overall memory usage. Consequently, the enhancement in memory efficiency is
more pronounced in the S2 and S4 experiments.

Effect of Runtime Batching. In general, when utilizing the VESTA partitioner to split a large
real-world model into two sub-models and evaluate them, the VESTA system can consistently
reduce memory consumption by approximately half. However, the speedup achieved through
partitioning depends on whether the additional task-level parallelism is effectively utilized or
not. Regarding speed, when the additional task-level parallelism is leveraged (S1 and S2), the
speedup achieved is more notable in comparison to the non-partitioned case. In the case of S1,
where partial parallelism is utilized alongside multi-thread execution, the speedup is less than the
theoretical 2× speedup seen in the S2 case. In the S3 and S4 scenarios where partitioned models are
evaluated sequentially, despite the reduction in size of all matrix operands due to partitioning, the
overall computation time still increases compared to the non-partitioned cases. (Further elaboration
will be provided in the subsequent paragraph.) Regarding memory utilization, the VESTA system
achieves a substantial reduction across all four settings, surpassing the theoretical 50% threshold in
settings S3 and S4. This notable outcome is attributed to the combination of smaller partitioned
sub-models and the elimination of Reshuf. It is worth noting that the utilization of multi-thread and
multi-process execution necessitates larger memory compared to serial cases, thereby influencing
the effectiveness of partitioning across the four settings.

Discussion: The reason for the decrease in speed under S3 and S4 setting. In general, the reduction
in speed observed in settings S3 and S4 compared to non-partitioned cases can be attributed to
the implementation of packed ciphertext and SecComp. Specifically, the adaptation of ciphertext
packing results in the computation complexity of matrix-vector multiplication being determined by
the number of rows in the matrix operand. Despite partitioning reducing the size of the plaintext
matrix operand, the total number of packed ciphertexts involved in the computation, or in other
words, the total number of rows in all sub-matrices, remains the same. However, evaluating two sub-
models necessitates two SecComp invocations, the complexity of which is determined by precision
rather than input vector size. Therefore, each partition incurs an extra SecComp invocation as a
penalty, leading to an increase in overall computation time when the additional parallelism is not
utilized. It is important to note that the speedup provided by the VESTA runtime persists when
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Fig. 9. Comparison of computation time of each step while evaluating non-partitioned models: COPSE
runtime versus VESTA runtime (under S2 setting)

evaluating partitioned models. In the case of multi-thread execution (S3), the reduction in the
reordering step is outweighed by the addition of SecComp invocations, resulting in a negative
impact on speed. Conversely, in setting S4, where the reordering step is more computationally
intensive than SecComp, a speedup is still achieved.

7.2 Example: How Time and Memory Efficiency are Improved under S2 Setting
Since the VESTA system demonstrates the most notable enhancements in computation and memory
efficiency on average under the S2 setting, we will provide detailed experiment results conducted
under the S2 setting to showcase the effectiveness of the VESTA runtime and VESTA partitioner in
achieving speedup and memory optimization.

How VESTA runtime speedups the inference process under S2 setting. Figure 9 displays the normal-
ized time required for each computation step of the VESTA runtime in comparison to the COPSE
runtime when evaluating all models without partitioning under S2 setting. Here, we would like
to emphasize two observations: firstly, the experimental results presented here clearly demonstrate
that the removal of the reorder step in the VESTA runtime does not incur any additional trade-offs.
In other words, the computation time required for each step of the VESTA runtime is no greater
than that of the corresponding step in the COPSE runtime. Secondly, the VESTA runtime achieves
a higher speedup when evaluating large real-world models compared to smaller microbenchmark
models. This is because using the original COPSE runtime to evaluate large models would require
more time for the reordering step, whereas the elimination of this step in the VESTA runtime leads
to a significant speedup.

How partitioning improves the computation speed and memory efficiency under S2 setting. Figure 10
and Figure 11 illustrate the speedup and reduction in memory consumption achieved by using the
VESTA partitioner to divide real-world models with different𝑚 settings and then evaluating the
sub-models using VESTA runtime in comparison to the COPSE system under the S2 setting. Here,
we would like to emphasize two observations: firstly, it is important to note that partitioning can
greatly enhance both computation and memory efficiency. In general, partitioning a large model
into𝑚 sub-models and evaluating them under the S2 setting can result in approximately an𝑚-fold
speedup with only 1

𝑚
of the original memory consumption. Secondly, the sub-models generated by

the VESTA partitioner can be evaluated using the COPSE system, resulting in notable speedup and
reduction in memory consumption. However, the performance of the COPSE system integrated
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Fig. 10. Comparison of computation speed while evaluating𝑚-partitioned real-world models: COPSE system
versus VESTA system (under S2 setting)

Fig. 11. Comparison of memory consumption while evaluating𝑚-partitioned real-world models: COPSE
system versus VESTA system (under S2 setting)

Fig. 12. Comparison of average time and memory consumption for evaluating all models using VESTA system
and COPSE system across four settings

with the VESTA partitioner is not as efficient as the standalone VESTA system due to the additional
reordering step.

7.3 Discussion: Comparison of Speed and Memory between Four Settings
Figure 12 displays the average time and memory requirements when conducting inference tasks
using the VESTA system and the COPSE system across four different settings. Here, we would like
to emphasize two observations: Firstly, when a setting enables faster evaluation speed, it usually
necessitates more runtime memory, regardless of whether the COPSE system or the VESTA system
is being utilized. Secondly, in all settings, utilizing the VESTA system will consistently lead to faster
speed and lower memory consumption. The enhancement is notably significant for inference tasks
performed in settings that initially exhibit slow evaluation speed or high memory consumption. In
summary, the proposed optimizations can enhance computation and memory efficiency without
incurring any additional costs, making VESTA consistently effective across the four experimental
configurations.
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8 Related Work
FHE-based Tree Ensemble Inference. To design an FHE-based secure inference system for tree

ensembles, the initial challenge is to devise a protocol that utilizes homomorphic addition and
multiplication to carry out the tree walk inference process. Bost et al. [13] first offer a method to
encode decision trees into polynomials, thereby facilitating their adaptation for FHE. Building on
this concept, Wu et al. [55] develop a two-party secure inference protocol along with an algorithm
that enables the comparison of encrypted values. Later, Tai et al. [49] improved the polynomial-like
representation by transforming it into linear functions that has less linear dependency. Furthermore,
Aloufi et al. [7] propose an enhanced comparison protocol called “SecComp” that reduces the cost
required. Up to this point, the computational cost remains exceedingly high due to the sequential
nature of polynomial computation. Then, COPSE system [38] is introduced as a three-party secure
inference system for tree ensembles, optimizing the computation through vectorization. Its multi-
threaded version has achieved state-of-the-art performance, surpassing the previous system more
than 10× in terms of speed. When compared to the aforementioned systems, the VESTA system
demonstrates the highest performance levels in speed and memory efficiency.

Compilers for FHE Applications. Developing an FHE-based application necessitates expertise
in the relevant cryptographic system and meticulous programming to attain satisfactory com-
putational efficiency, thus giving rise to a specialized category of FHE compilers. For instance,
various compilers offer domain-specific languages that enable users to write code in plaintext
form, which is subsequently converted into a homomorphic version. Notable examples include
RAMPARTS [8], HEIR [10], E3 [16], ALCHEMY [21], HECO [52] and Marble [53]. Another category
of FHE compilers functions as optimizers that produce efficient homomorphic computation kernels
by employing techniques like vectorization. Examples of such compilers include Porcupine [20],
EVA [22], Fhelipe [32], the compiler proposed in [33], HECATE [34] and Coyote [37]. Furthermore,
certain compilers are specifically tailored for particular FHE-based operations or applications,
such as polynomial computation (HEaaN.MLIR [43]) and deep neural networks (nGraph-HE [12],
AHEC [15], and CHET [23]). The primary objective of all these compilers is to produce an efficient
homomorphic computation kernel based on a known plaintext FHE-friendly implementation. How-
ever, they are not applicable for tasks such as tree ensemble inference, which cannot be directly
implemented using homomorphic addition and multiplication.

Privacy-preserving Tree Ensemble Inference. Privacy-preserving tree ensemble inference protocols
are categorized based on the specific application scenarios they are designed for. Research works [13,
17, 29, 49, 50, 55] introduce early-stage systems that rely on interactive secure comparison protocols.
However, interactive secure comparison protocols have high communication complexity, making
them unsuitable for low-computation-power servers with limited bandwidth. Recent researches
on non-interactive system [6, 19, 36, 58] primarily concentrate on two-party scenarios, where
the model owner also serves as the compute server. When comparing the two-party setting with
our intended three-party setting, it is evident that the three-party protocol is more intricate. This
complexity arises from the challenge of safeguarding model privacy from the third-party server
involved in the computation. Hence, the existing systems cannot serve as substitutes for our VESTA
system.

9 Conclusions
In this paper, we present VESTA, an FHE-based three-party secure inference system for tree en-
semble models. To reduce inference time and memory consumption, we propose Compile-time
Precomputation and Runtime Batching. The former converts an expensive runtime step computed in
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ciphertext format into compile-time plaintext precomputation, while the latter partitions the tree
ensemble model into sub-models and executes them independently in batches. Evaluation results
show that the two techniques reduce both computational complexity and memory consumption
significantly, with the same level of security. Our VESTA system is designed to be flexible, gen-
eral, and efficient. It only requires support for two fundamental operations, addition and scalar
multiplication, which are available in all FHE schemes.
To the best of our knowledge, our VESTA system offers a practical solution for three-party

secure evaluation of tree ensembles, achieving the fastest computation speed and the smallest
memory footprint. Its design philosophy, which involves precomputing costly runtime operations
during offline compilation through a compiler-runtime co-design, could serve as a paradigm for
the development of other privacy-preserving machine learning systems.
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