
Multi-way High-throughput Implementation of
Kyber

Xuan Yu1[0009−0009−1922−7719], Jipeng Zhang1, Junhao Huang2, Donglong

Chen2, and Lu Zhou1,�

1 Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
yxcos2021@163.com, jp-zhang@outlook.com, lu.zhou@nuaa.edu.cn

2 Guangdong Provincial Key Laboratory of IRADS, BNU-HKBU United
International College, Zhuhai, China {huangjunhao,donglongchen}@uic.edu.cn

Abstract. This paper presents a novel approach to implement a multi-
way Key Encapsulation Mechanism (KEM) that takes full advantage of
the parallelism provided by SIMD instructions. Specifically, our multi-
way KeyGen() function is capable of generating multiple unique key pairs
simultaneously. To start, we introduce a multi-way data format to sup-
port the proposed multi-way KEM implementation. We then introduce a
multi-way NTT implementation based on this novel data format. Com-
pared to traditional one-way NTT implementation, our multi-way NTT
significantly reduces the complicated permutation operations, leading
to overall performance improvements. In terms of SHA3-related com-
putations, while previous one-way Kyber implementations have used
multi-way SHAKE to speed up the matrix and vector generation, the
inherent execution flow of the one-way KEM cannot fully utilize the
parallelism of the multi-way SHA3 implementation. On the contrary,
our multi-way implementation effectively parallelizes these SHA3 com-
putations, resulting in substantial speed enhancements. We have ap-
plied this methodology to Kyber on AVX2 and AVX-512, developing
a 16-way Kyber implementation for AVX2 and a 32-way implementa-
tion for AVX-512. With faster multi-way NTT and fully parallelized
SHA3 computations, the key generation, encapsulation, and decapsu-
lation in Kyber on AVX2 and AVX-512 achieve impressive speed-ups of
36.0%/54.6%/25.9% and 80.6%/130.3%/51.3%, respectively, compared
to traditional one-way AVX2 implementation. Lastly, we demonstrate
the versatility of our multi-way approach in real-world applications. For
example, the multi-way KeyGen() function can be seamlessly integrated
into the TLS protocol using OpenSSL ENGINE APIs, extending its ad-
vantages to a wide range of TLS applications. Additionally, the multi-
recipient KEM (mKEM) protocols used for secure group messaging can
also benefit from our multi-way approach to enhance their performance.

Keywords: Post-quantum cryptography · Kyber · SIMD · Optimized
implementation · Multi-way implementation.

2 Xuan Yu et al.

1 Introduction

In 1999, Shor [28] proposed efficient polynomial-time algorithms on a hypothet-
ical quantum computer which can break the conventional public-key cryptosys-
tems once large-scale quantum computers become practical. To counter potential
quantum attacks in the quantum era, the National Institute of Standards and
Technology (NIST) [2] initiated the post-quantum cryptography (PQC) stan-
dardization project to solicit, evaluate, and standardize the PQC algorithms
that are secure against potential quantum attacks. NIST has completed the
third round process and selected four PQC candidates for final standardization.
Till the end of 2023, NIST has published three PQC standardization drafts,
namely FIPS203 [24], FIPS204 [23], and FIPS205 [25].

Among the three drafts, Kyber [5] is the only KEM scheme that has been
standardized and officially named ML-KEM in NIST FIPS203 due to its high
security and excellent efficiency. Kyber is an IND-CCA2-secure KEM scheme,
in which the IND-CCA2-secure KEM is constructed over the IND-CPA-secure
public-key encryption using the tweaked Fujisaki-Okamoto (FO) transform [13].
The security of Kyber is based on a strong lattice-based hard problem, specifi-
cally the module learning-with-errors (MLWE) problem [21]. As Kyber has been
standardized by NIST and is the only KEM scheme in the final selection, the
efficient implementation of Kyber on various platforms becomes an important re-
search focus with significant implications for ensuring data security and privacy
for different application scenarios in the quantum era.

Nowadays, with the rapid development of the Internet and big data, the ex-
isting servers face the significant task of handling a substantial volume of data
processing. For instance, Big name sales, like Black Friday, can drive traffic levels
30 times higher than a normal day [22]. These transactions normally employ the
Transport Layer Security (TLS) protocol, involving extensive public-key cryp-
tographic computations. In the face of the quantum era, optimizing Kyber, the
only KEM scheme standardized by NIST, to enable high throughput implemen-
tation on servers emerges as a crucial research focus. Such optimization not only
alleviates computational pressure and reduces server response time but also pro-
vides a strong guarantee of data security in the quantum era.

1.1 Related Work

There is much significant work done by other researchers in the field of imple-
menting cryptographic schemes on various platforms.

Seiler [27] proposed a signed Montgomery reduction that enables a fast ap-
proach with integer instructions, based on which he presented the state-of-the-art
implementation of Kyber on AVX2. Cheng et al. [11] presented an optimized im-
plementation of SIKE using Intel AVX-512IFMA instructions, parallelizing and
speeding up the base/extension field arithmetic, point arithmetic, and isogeny
computations performed by SIKE. The instantiation with the SIKEp503 param-
eter set is approximately 1.5 times faster than the to-date best AVX-512IFMA-
base SIKE software. Becker and Kannwischer [7] introduced two new techniques

Multi-way High-throughput Implementation of Kyber 3

for the fast implementation of the Keccak permutation on the A-profile of
the Arm architecture, based on which they presented the implementation of
SPHINCS+, achieving up to 1.89× performance improvements compared to the
state of the art. Sujoy Sinha Roy [26] proposed a high-throughput software imple-
mentation of Saber, called “SaberX4”, which applies the batching technique and
processes four Saber KEM operations in parallel using the AVX2 instructions.
The implementation of SaberX4 achieves nearly 1.5 times higher throughput
compared to the AVX2-optimized non-batched implementation of Saber. Zheng
et al. [33] introduced an improved parallel small polynomial multiplication and
a tailored reduction method to improve the efficiency. They also presented an
optimized implementation of Dilithium by utilizing AVX2 and AVX-512 and
achieved 36.6%-47.4% speed-ups for key generation, signing, and verification
for Dilithium2/3/5, respectively. Huang et al. [18,19] introduced two improved
Plantard’s modular arithmetic (Plantard arithmetic), based on which they pre-
sented faster implementations of Kyber on Cortex-M3, Cortex-M4, and RISC-V
platforms, achieving the speedup ranging from 11.28% to 56.95% for NTT and
INTT respectively. Greconici [15] presented a speed optimization for Kyber on
the open-source RISC-V architecture, including optimized implementations of
NTT/INTT, Montgomery reduction, and Barrett reduction.

1.2 Motivations

Currently, researchers are primarily focused on speeding up one-way Kyber on
different platforms with various instruction set architectures (ISA), as listed in
Section 1.1. However, to the best of our knowledge, there is limited exploration
specifically on multi-way implementations using the Single-Instruction-Multiple-
Data (SIMD) instructions for Kyber. The main reasons for focusing on the im-
plementation of multi-way Kyber are as follows.

First of all, from the application perspective, we identified some real-world
application scenarios that favor the multi-way approach. This is inspired from the
mKEM and amKEM primitives presented in [4], where the CPA-secure public-
key encryption (PKE) primitive needs to be invoked N times to generate N dis-
tinct encapsulation keys in the secure group messaging and broadcast application
scenarios. This observation motivated us to explore the multi-way implementa-
tion of PKE and KEM. As a result, when N is sufficiently large, our proposed
multi-way implementation can be leveraged to efficiently generate batched en-
capsulation keys, thereby enhancing the performance of these primitives.

Secondly, upon analyzing the subroutines of Kyber, we find that multi-way
implementation of Kyber is not only a seldom-explored subject but also an effec-
tive optimization method. Intel’s Advanced Vector Extensions instruction sets,
including AVX2, and AVX-512, are designed to provide high performance with
expanded registers and advanced SIMD instructions. The existing Kyber imple-
mentations using SIMD mainly focused on accelerating one-way Kyber, where all
registers and parallelism are utilized for one-way operations. The dataflow is rear-
ranged to facilitate one-way acceleration, which requires time-consuming permu-
tation instructions, leading to unavoidable performance penalties. In comparison

4 Xuan Yu et al.

to the one-way implementations adopted by most work (e.g., [1,10,7,33,31]), the
multi-way implementation has the potential to reduce redundant operations and
mitigate the permutation costs associated with rearranging dataflow required by
one-way implementations, thereby significantly improving the throughput of the
cryptographic algorithm.

Finally, as demonstrated in [7], the multi-way vectorized SHA3 implemen-
tation leveraging SIMD exhibits more efficiency compared to its one-way scalar
implementation. However, the inherent execution flow of the one-way KEM can-
not fully utilize the parallelism of the multi-way SHA3 implementation. In con-
trast, the multi-way Kyber implementation would facilitate a more seamless and
extensive utilization of multi-way SHA3, thereby yielding a significant enhance-
ment in efficiency and throughput for Kyber implementation. More details are
described in Section 3.3.

1.3 Contributions

Based on the above observations, we explore a multi-way Kyber implementation
on both AVX2 and AVX-512, respectively. Our contributions are as follows:

– We develop a multi-way KEM implementation that fully leverages the paral-
lelism of SIMD instructions. We introduce a multi-way data format to imple-
ment the multi-way Kyber, including 16-way format and 32-way format
tailored for AVX2 and AVX-512, respectively. Based on the multi-way data
format, we instantiate a 16-way implementation on AVX2 and a 32-way
implementation on AVX-512 for Kyber, where each lane in the multi-way
implementation performs a one-way Kyber instance.

– We design and implement a 16-way and a 32-way NTT-based polynomial
multiplication for Kyber on AVX2 and AVX-512, respectively. According
to the characteristics of the AVX2 instruction set, we adopt a 3+3+1 layer-
merging strategy to implement the 16-way NTT similar to the one-way NTT
implementation in [3]. Different from the 16-way implementation, we adopt
a 4+3 layer-merging strategy for NTT implementation on AVX-512. Owing
to the characteristic of our multi-way implementation methodology, both
multi-way NTT implementations reduce the permutation operations that
are indispensable in one-way implementation, thereby improving the overall
efficiency.

– We further optimize the utilization of SHA3-related operations in our multi-
way implementation, parallelizing all SHA3-related operations within the
KEM primitive using 4-way and 8-way SHA3, thereby substantially ac-
celerating the SHA3-related computations and significantly enhancing the
throughput of Kyber.

– Our investigation reveals that the proposed multi-way KEM implementation
exhibits broad applicability. Previous works [8,32] have successfully imple-
mented batched key generation for NTRU Prime and X25519, respectively,
and integrated them into TLS using the OpenSSL ENGINE APIs, thereby
validating the efficacy of the multi-way batched implementation. Moreover,

Multi-way High-throughput Implementation of Kyber 5

our multi-way method for KEM is also well-suited for various cryptographic
protocols and primitives, including KEMTLS, mKEM, amKEM, and others.

Code. The software of this work is available at https://github.com/cccccos
ine/Kyber_AVX2_16w.git and https://github.com/cccccosine/Kyber_AVX5
12_32w.git.

2 Preliminaries

In this section, we briefly revisit the specification of Kyber and NTT-based
polynomial multiplication. Then, the AVX2 and AVX-512 instruction sets will
also be introduced.

2.1 Kyber

The security of Kyber [9] is based on the hardness of solving the module learning-
with-errors (MLWE) problem. The IND-CCA2-secure Kyber KEM scheme (Ky-
ber.CCAKEM) is constructed over an IND-CPA-secure PKE called CPAPKE us-
ing a variant of the Fujisaki-Okamoto transform [13]. The Kyber.CPAPKE pro-
tocol includes key generation, encryption, and decryption, which are described
in Algorithms 1, 2, and 3, respectively.

Algorithm 1 Kyber.PKE.KeyGen [9]
Output: sk ∈ B12·k·n/8;pk ∈ B12·k·n/8+32

1: seed← B32 ▷ Generate a 32-byte
random seed

2: (ρ, σ) := SHA3−512(seed)
3: Â := GenMatrixA(ρ)
4: (s, e) := SampleVec(σ)
5: t̂ := Compress12(Â ◦NTT(s))

+NTT(e)
6: ŝ′ := Compress12(̂s)
7: return (pk := (̂t, ρ), sk := ŝ′)

Algorithm 2 Kyber.PKE.Enc [9]
Input: pk ∈ B12·k·n/8+32; m, r ∈ B32

Output: c ∈ Bdu·k·n/8+dv·n/8

1: t̂′ := Decompress12(̂t)
2: Â := GenMatrixA(ρ)
3: (r, e1, e2) := SampleVec(r)
4: r̂ := NTT(r)
5: u := INTT(ÂT ◦ r̂) + e1

6: v := INTT(t̂T ◦ r̂)+e2+Compress1(m)
7: return c := (u′ := Compress10(u),

v′ := Compress4(v))

Algorithm 3 Kyber.PKE.Dec [9]
Input: sk ∈ B12·k·n/8; c ∈ B(du·k+dv)·n/8

Output: m ∈ B32

1: u := Decompress10(u
′)

2: v := Decompress4(v
′)

3: ŝ := Decompress12(̂s
′)

4: return Compress1(v − INTT(̂sT ◦
NTT(u)))

Algorithm 4 Kyber.KEM.KeyGen [9]
Output: sk ∈ B24·k·n/8+96;

pk ∈ B12·k·n/8+32

1: z ← {0, 1}256
2: (pk, sk′) := Kyber.PKE.KeyGen()
3: sk := (sk′||pk||SHA3−256(pk)||z)
4: return (pk, sk)

Kyber has three parameter sets: Kyber512, Kyber768, and Kyber1024. In this
work, we primarily focus on Kyber768, and the relevant parameters used are as
follows: polynomial dimension n = 256; matrix and vector dimension k = 3;

https://github.com/cccccosine/Kyber_AVX2_16w.git
https://github.com/cccccosine/Kyber_AVX2_16w.git
https://github.com/cccccosine/Kyber_AVX512_32w.git
https://github.com/cccccosine/Kyber_AVX512_32w.git

6 Xuan Yu et al.

Algorithm 5 Kyber.KEM.Encaps [9]
Input: pk ∈ B12·k·n/8+32

Output: c ∈ Bdu·k·n/8+dv·n/8

Output: K ∈ B∗

1: m← {0, 1}256
2: m′ := SHA3−256(m)
3: (K̄, r) := SHA3−512(m′||SHA3−256(pk))
4: c :=Kyber.PKE.Enc(pk,m, r)
5: K := SHAKE256(K̄||SHA3−256(c))
6: return (c,K)

modulus q = 3329; and du = 10, dv = 4 where du and dv are the compression
parameter used for compressing polynomial vectors and polynomials respectively.
The B in the algorithm description means that the variable is in byte format
and the variable with ˆ represents the variable in the NTT domain. The ◦
symbol denotes the coefficient-wise multiplication, and the T symbol represents
the transposition of a vector or matrix.

Kyber computes on the polynomial ring Rq = Zq[X]/(Xn+1) where dimen-
sion n = 256 and modulus q = 3329. Because q < 212, polynomial coefficients
can be accommodated in a 16-bit integer. This selected polynomial ring enables
a 7-layer incomplete NTT with a primitive 256-th root of unity.

Algorithm 6 Kyber.KEM.Decaps [9]
Input: c ∈ Bdu·k·n/8+dv·n/8

Input: sk ∈ B24·k·n/8+96

Output: K ∈ B∗

1: pk := sk + 12 · k · n/8
2: h := sk + 24 · k · n/8 + 32 ∈ {0, 1}256
3: z := sk + 24 · k · n/8 + 64
4: m′ :=Kyber.PKE.Dec(sk, c)
5: (K̄′, r′) := SHA3−512(m′||h)
6: c′ :=Kyber.PKE.Enc(pk,m′, r′)
7: if c = c′ then
8: return K := SHAKE256(K̄′||SHA3−256(c))
9: else

10: return K := SHAKE256(z||SHA3−256(c))
11: end if
12: return K

Algorithms 4, 5, and 6 denote the key generation, encapsulation, and decap-
sulation of the Kyber.CCAKEM, respectively. We can see that Kyber.CCAKEM
protocols are constructed based on Kyber.CPAPKE protocol and some symmet-
ric primitives. The Kyber.CCA.KeyGen utilizes the Kyber.CPA.KeyGen to gen-
erate key pairs. The Kyber.CCA.Encaps encrypts the random message using
Kyber.CPA.Enc to obtain the ciphertext and employ SHA3-related primitives to

Multi-way High-throughput Implementation of Kyber 7

generate a shared key. The communication peer receives the ciphertext and uti-
lizes the Kyber.CPA.Dec to recover the message generated by Kyber.CCA.Encaps,
and then compute the shared key with SHA3-related primitives.

2.2 Number Theoretic Transform (NTT)

Number Theoretic Transform is an efficient way to compute polynomial multi-
plication on Rq = Zq[X]/(Xn + 1) with the time complexity of O(nlogn) [12].
Since Zq in Kyber only contains 256-th primitive roots of unity but not 512-
th primitive roots of unity [5], the polynomial f(X) = X256 + 1 can only be
factorized into 128 degree-1 polynomials modulo q as follows:

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1) =

127∏
i=0

(X2 − ζ2br7(i)+1),

where br7(i) for i = 0,· · ·,127 denotes the bit reversal of the unsigned 7-bit
integer i and ζ = 17 is the first 256-th primitive root of unity modulo q. After
NTT, the polynomial f(X) is given by

(f mod X2 − ζ2br7(0)+1, · · · , f mod X2 − ζ2br7(127)+1).

The computation of NTT can also be represented as follows:

NTT(f) = f̂ = f̂0 + f̂1X + · · ·+ f̂255X
255

with

f̂2i =

127∑
j=0

f2jζ
(2br7(i)+1)j ,

f̂2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)j .

Besides, in the light of the Chinese remainder theorem, the natural ring ho-
momorphism is in fact an isomorphism. Hence, we can compute the polynomial
multiplication f and g as f ·g = INTT(NTT(f)◦NTT(g)), where ◦ represents the
coefficient-wise multiplication of two degree-1 polynomials in the NTT domain.

2.3 AVX2 and AVX-512

AVX2 and AVX-512 are two advanced SIMD instruction sets developed by Intel
to enhance the parallel computing capabilities and vectorization supports of
processors.

AVX2 is an extension of the AVX instruction set, introducing additional
instructions and features to strengthen the processor’s support for vectorized
operations. AVX2 is equipped with sixteen 256-bit YMM registers (ymm0-ymm15)
to perform the SIMD instructions. It also introduces additional vectorized load

8 Xuan Yu et al.

and store instructions, as well as bitwise instructions. These enhancements enable
improved performance and increased efficiency for a wide range of applications,
including multi-media processing, scientific simulations, and cryptography.

AVX-512 is the latest extension of the AVX instruction set, introducing 32 us-
able 512-bit ZMM registers (zmm0-zmm31) to further expand the vector width and
parallel computing capabilities. AVX-512 offers a broader set of floating-point
and integer operation instructions, along with new memory operation instruc-
tions, making it suitable for high-performance computing and handling large-
scale data. AVX-512 supports greater data parallelism, enabling the processing
of more data elements in one instruction.

SIMD instructions support operations on data at 64-bit, 32-bit, 16-bit, and
8-bit granularity within registers. Simply put, take the instruction VPADDW on
AVX2 as an example. There are 16 16-bit integers a0, · · ·, a15 stored in a 256-bit
register. Similarly, the other 16 16-bit integers b0, · · ·, b15 are stored in the other
256-bit register. VPADDW is able to compute 16 16-bit additions in parallel, i.e.,
a0 + b0, · · ·, a15 + b15, and the results are stored in the destination register. The
instruction VPADDW is also available on the AVX-512 platform. However, unlike
AVX2, AVX-512 has 32 16-bit data elements stored in a register when using
VPADDW. Consequently, the destination register also contains 32 16-bit results.

3 The multi-way Kyber Implementation

The term “multi-way implementation” indicates the capability to execute multi-
ple independent operations in parallel, where each lane in the multi-way imple-
mentation performs a one-way Kyber instance. For example, in the case of 16-way
NTT-based multiplication, it allows for the parallel execution of 16 independent
polynomial multiplications. Similarly, 16-way Kyber.CCAKEM.KeyGen enables
the generation of 16 independent key pairs at once. Our multi-way Kyber imple-
mentation is built upon the official AVX2 implementation of Kyber [20] provided
by Kyber’s team, and can be seamlessly adapted to the ML-KEM primitive pro-
posed in the FIPS203, which builds upon Kyber with modifications.

Before we move forward to the implementation details, we need to specify the
polynomial representation formats in one-way and multi-way implementations.
In one-way AVX2 Kyber implementation, each polynomial consists of 256 coef-
ficients a0, a1, · · · , a254, a255, which are stored in sequence. We define this format
as one-way format.

To facilitate the multi-way Kyber implementation using SIMD instructions,
we design a new format, namely the multi-way format. Notably, this for-
mat is not the straightforward concatenation of multiple polynomials in the
one-way format. To illustrate, consider the 16-way format as an instance. As
depicted in Figure 1, every letter denotes an independent polynomial, with the
subscript of the letter indicating the indices of polynomial coefficients. In the
16-way format, we schedule 16 i-th coefficients (i ∈ [0, 256)) from 16 distinct
polynomials in sequence so that we can load these 16 i-th coefficients into one
256-bit AVX2 register. The 32-way format follows a similar design tailored for

Multi-way High-throughput Implementation of Kyber 9

AVX-512. In the rest of the paper, the 16-way Kyber implementation lever-
ages the 16-way format while the 32-way Kyber implementation employs the
32-way format to represent polynomials.

Fig. 1. The 16-way format to represent 16 polynomials

3.1 NTT/INTT implementation

NTT/INTT are one of the most time-consuming subroutines in Kyber. The one-
way implementation of Kyber using AVX2 [20] adopts the 1+6 layer-merging
strategy to implement NTT. However, in the 6-layer implementation of NTT,
the coefficient order produced in each NTT layer can not be directly used in
the next NTT layer. Therefore, additional permutation instructions are required
to rearrange coefficients’ order after each NTT layer, leading to a significant
performance overhead.

In our 16-way implementation, the 16-way NTT/INTT can perform 16 in-
dependent polynomial multiplications in parallel. To achieve this, we follow the
16-way format and load 16 16-bit coefficients in each 256-bit AVX2 register,
with each coefficient originating from a different polynomial. Since there are
only sixteen 256-bit registers available, it is insufficient to accommodate 4-layer
merging NTT implementation, as this would exhaust all registers for accommo-
dating coefficients, precluding other essential computations. Therefore, we utilize
the 3+3+1 layer-merging strategy to implement the 16-way NTT/INTT. In this
way, we need 8 256-bit AVX2 registers to load 8×16 coefficients from 16 different
polynomials. As for the remaining 8 registers, we reserve one register for storing
16 packed q constants, and the rest for temporary usage during the computa-
tion of butterfly units. AVX-512 offers up to 32 512-bit registers, allowing us to
load the 32-way format’s coefficients into 16 512-bit registers for the 32-way
implementation. Consequently, the 4+3 layer-merging strategy can be employed
on AVX-512. The remaining 16 512-bit registers are adequate for storing the
packed constants q and other intermediate values. Moreover, compared to the
one-way implementation that requires additional permutation instructions, the
order of output in each NTT layer of our multi-way implementation of Kyber
meets the requirement of dataflow order, thereby eliminating all the permutation
operations.

The core operations of NTT and INTT are the butterfly units, which are
commonly implemented with the Cooley-Tukey (CT) butterfly [12] and the
Gentleman-Sande (GS) butterfly [14], respectively. The CT butterfly inputs data
in normal order and outputs data in bit-reversal order. In contrast, the GS but-
terfly takes inputs in bit-reversal order and produces outputs in normal order.

10 Xuan Yu et al.

During the NTT operations, the powers of ζ, referred to as twiddle factors,
are often stored in a precomputed format for saving expenses when computing
Montgomery reduction. The precomputed twiddle factor is in the form of ζk ×
216 mod q, where the ζk is a power of ζ. We rearrange the order of the twiddle
factors to align with the order they are used in our implementation.

In the one-way INTT implementation on AXV2, the coefficients within a
register have different ranges, causing all coefficients to be reduced simultane-
ously when one requires reduction. In contrast, our multi-way implementation
enables the coefficients in a register to share a consistent range, leading to more
efficient coefficient reduction. This ultimately saves a total of 20 and 62 modular
reductions for the 16-way and 32-way implementation, respectively.

3.2 The multi-way Kyber.CPAPKE implementation

Apart from the multi-way NTT/INTT, there are other subroutines in the Ky-
ber.CPAPKE that are required to be implemented in multi-way. In this section,
we will introduce the subroutines in the Kyber.CPAPKE that need further ad-
justment during the multi-way Kyber.CPAPKE implementation.

Algorithm 7 Kyber.PKE.KeyGen−Nway [9]
Output: sk ∈ B(12·k·n/8)×N ; pk ∈ B(12·k·n/8+32·2)×N

1: seed0 ∼ seedN−1 ← B32×N ▷ N := 16 or N := 32
2: for i = 0 to 3 do
3: (ρN/4×i, σN/4×i) ∼ (ρN/4×(i+1)−1, σN/4×(i+1)−1) := SHA3−512−(N /4)way

(seed(N/4×i)∼(N/4×(i+1)−1)) ▷ 4-way/8-way SHA3 on AVX2/AVX-512
4: Â := GenMatrixA(ρ0∼N−1)
5: Âseq := Matrix_seqtoN (Â) ▷ Âseq represents Â is in multi− way format
6: (s0∼N−1, e0∼N−1) := SampleVec(σ0∼N−1)
7: (sseq0∼N−1, eseq0∼N−1) := Polyvec_seqtoN (s0∼N−1, e0∼N−1)
8: t̂seq0, · · · , t̂seqN−1 := Compress12(Âseq ◦NTT(sseq0∼N−1) + NTT(eseq0∼N−1))
9: ŝseq′

0, · · · , ŝseq′
N−1 := Compress12(̂sseq0, · · · , ŝseqN−1)

10: (̂t0∼N−1, ŝ0∼N−1) := Keypair_seqfromN (̂tseq0∼N−1, ŝseq0∼N−1)
11: return (pk0∼N−1 := (̂t0∼N−1, ρ0∼N−1), sk0∼N−1 := ŝ′0∼N−1)

Format sequence conversion. Our multi-way implementation leverages our
specialized format, which also produces output in the multi-way format. This
multi-way format is incompatible with the final result. So it is necessary to
convert data between one-way format and multi-way format. As shown in
the Algorithms 7, 8, and 9, the subroutines with _seqtoN or _seqfromN suf-
fix are all conversion subroutines, responsible for transforming data between
one-way format and N-way format. Specifically, N equals 16 for the 16-way
AVX2 implementation and 32 for the 32-way AVX-512 implementation, respec-
tively. The seq suffix of variables denotes that they are in multi-way format.

Inspired by the rearrangement subroutines of one-way Kyber implementa-
tion, we implement different format conversion subroutines for different formats
of variables, including matrix, keypair, message, and so on. Compared to the

Multi-way High-throughput Implementation of Kyber 11

Algorithm 8 Kyber.PKE.Enc−Nway [9]
Input: pk ∈ B(12·k·n/8+32·2)×N ; m ∈ B32×N ; r ∈ B32×N ▷ N := 16 or N := 32
Output: c ∈ B(du·k·n/8+dv·n/8)×N

1: t̂seq0∼N−1 := Keypair_seqtoN (̂t0∼N−1) ▷ pk0∼N−1 := (̂t0∼N−1, ρ0∼N−1)

2: t̂seq
′
0∼N−1 := Decompress12(̂tseq0∼N−1)

3: mseq0∼N−1 := Msg_seqtoN (m0∼N−1)

4: Â := GenMatrixA(ρ0∼N−1)
5: Âseq := Matrix_seqtoN (Â)
6: (r0∼N−1, e10∼N−1 , e20∼N−1) := SampleVec(r0∼N−1)
7: (rseq0∼N−1, e1seq0∼N−1) := Polyvec_seqtoN (r0∼N−1, e10∼N−1),

e2seq0∼N−1 := Poly_seqtoN (e20∼N−1)
8: r̂seq0∼N−1 := NTT(rseq0∼N−1)

9: useq0∼N−1 := INTT(Âseq
T ◦ r̂seq0∼N−1) + e1seq0∼N−1

10: vseq0∼N−1 := INTT(̂tseq
T

0∼N−1 ◦ r̂seq0∼N−1) + e2seq0∼N−1+
Compress1(mseq0∼N−1)

11: useq′
0∼N−1 := Compress10(useq0∼N−1),vseq

′
0∼N−1 := Compress4(vseq0∼N−1)

12: return c0∼N−1 := (u′
0∼N−1,v

′
0∼N−1)

:= Cipher_seqfromN (useq′
0∼N−1,vseq

′
0∼N−1)

one-way AVX2 implementation of Kyber, these format conversion subroutines
were added as an extra component in our multi-way implementation of Kyber.
The detail of format conversion is described in appendix A.

Reducing the cost of coefficient rearrangement. During the matrix gen-
eration (e.g., line 3 of Algorithm 1), the polynomials generated in this process
are considered to be in the NTT domain and arranged in bit-reversal order.
However, the output order of NTT in the one-way AVX2 Kyber implementation
is not in bit-reversal order, indicating that there is a gap between the coefficient
order of matrix A and the coefficient order of NTT’s output. As a result, the
one-way AVX2 Kyber implementation developed a coefficient rearrangement
subroutine to bridge this gap, consuming 2064 instructions. For our multi-way
implementation, the output order of our multi-way NTT is in bit-reversal order,
eliminating the need for coefficient rearrangement, thereby improving efficiency.

Algorithm 9 Kyber.PKE.Dec−Nway [9]
Input: sk ∈ B(12·k·n/8)×N ; c ∈ B(du·k·n/8+dv·n/8)×N

Output: m ∈ B32×N ▷ N := 16 or N := 32
1: (useq′

0∼N−1,vseq
′
0∼N−1) := Cipher_seqtoN (u′

0∼N−1,v
′
0∼N−1)

2: ŝseq′
0∼N−1 := Keypair_seqtoN (̂s′0∼N−1) ▷ sk0∼N−1 := ŝ′0∼N−1

3: useq0∼N−1 := Decompress10(useq
′
0∼N−1)

4: vseq0∼N−1 := Decompress4(vseq
′
0∼N−1)

5: ŝseq0∼N−1 := Decompress12(̂sseq
′
0∼N−1)

6: mseq0∼N−1 := Compress1(vseq0∼N−1 − (INTT(̂sseqT
0∼N−1 ◦ NTT(useq0∼N−1))))

7: return m0∼N−1 := Msg_seqfromN (mseq0∼N−1)

12 Xuan Yu et al.

In the one-way AVX2 implementation, the Compress subroutine in Algo-
rithm 1 also utilizes the coefficient rearrangement subroutine. Recall that the
polynomial coefficients in Kyber are 12-bit integers, as q < 212. For ease of
programming, we store each coefficient in a 16-bit data type. The Compress
subroutine in Algorithm 1 is used to compress every coefficient of the public and
secret keys into 12-bit, which saves storage space and communication costs. As
shown in lines 5 and 6 of Algorithm 1, the Compress subroutine takes inputs
Â ◦NTT(s) + NTT(e) and ŝ, respectively, which are not in bit-reversal order.
Therefore, after compressing the polynomial coefficients, they need to be con-
verted to bit-reversal order using the rearrangement subroutine to maintain
compatibility with the reference implementation of Kyber. In contrast, the in-
put of the Compress subroutine in our multi-way implementation is already in
bit-reversal order, so there is no need to rearrange the coefficients, which further
enhances the throughput of our multi-way implementation.

16-bit 16-bit 16-bit

16-bit 16-bit 16-bit

16-bit

16-bit

10-bit 10-bit 10-bit 10-bit

16-bit 16-bit 16-bit16-bit

compressing

concatenating

(a) Example in one-way AVX2 im-
plementation

16-bit 16-bit 16-bit

16-bit 16-bit 16-bit

10-bit 10-bit 10-bit

10-bit 10-bit 10-bit

16-bit 16-bit 16-bit

compressing

concatenating

(b) Example in 16-way AVX2 im-
plementation

Fig. 2. Compression subroutines of ciphertext (a1[0 : 5] denotes the least significant 6
bits of a1’s 10-bit value)

Optimization for the (de)compression format of the ciphertext. Sim-
ilar to the compression of the public and secret keys, the ciphertext is also
compressed in Kyber.CPAPKE.Enc (Algorithm 2) for saving memory space and
communication size. Different from the compression of the key pairs, the cipher-
text is compressed to 10 bits and then 256 10-bit coefficients are concatenated
and stored in the memory. Due to the fact that AVX2/AVX-512 instructions
process data in multiples of 8 bits (e.g., 16 bits, 32 bits, or 64 bits), the concate-
nation of 10-bit coefficients becomes more complex. The specific process of the

Multi-way High-throughput Implementation of Kyber 13

compression of ciphertext in the one-way implementation is described in Figure
2 (a). We take the first 256 bits of the ciphertext as an example and each line
of the figure represents a 256-bit memory space.

We design a compressing method for our multi-way implementation. Specifi-
cally, the ciphertext in our multi-way implementation is in multi-way format,
so we concatenate the coefficients of the same polynomial together. Taking the
16-way implementation as an example, as shown in Figure 2 (b), we consider
the first 512 bits of the ciphertext. Each line in the figure represents a 256-bit
memory space. Compared to the one-way compression subroutine, we consume
fewer instructions by employing the new compressing method, improving the ef-
ficiency of the ciphertext compression. Furthermore, converting ciphertext from
multi-way format to one-way format to ensure compatibility with one-way
implementation is relatively easy to achieve.

The decompression subroutine in Kyber.CPAPKE is the inverse operation
of the compression subroutine. Therefore, we leverage the inverse compressing
method mentioned above for the decompression subroutine. Similarly, the new
decompressing method reduces the number of instructions required, enhancing
the throughput of our multi-way implementation.

3.3 The multi-way Kyber.CCAKEM implementation

Our multi-way implementation of Kyber.CCAKEM, i.e., KEM.KeyGen-Nway(),
KEM.Encaps-Nway() and KEM.Decaps-Nway(), shares the same procedure with
the one-way AVX2 implementation of Kyber, except for minor modifications. So
we do not give the multi-way algorithm descriptions of Kyber.CCAKEM.

Generally speaking, all subroutines are executed N times in three algorithms
of the Kyber.CCAKEM, generating N pairs of public and secret keys, N cipher-
texts, and N shared secrets in the end. Specifically, N equals 16 for the 16-way
implementation and 32 for the 32-way implementation. We made the following
optimizations to accelerate this computation.

Parallel utilization of SHA3. As demonstrated in [17], the impact of SHA3
to the overall running time in Kyber can be predominant. Our multi-way Ky-
ber.CCAKEM leverages the XKCP library’s multi-way parallel SHA3 imple-
mentation to effectively accelerate SHA3-related computations [30]. In the Al-
gorithms 1 and 2, the GenMatrixA subroutine involves k × k polynomials. The
SHAKE output stream employed for every polynomial is independent, allow-
ing the one-way AVX2 implementation to utilize 4-way SHAKE for generating
polynomials of the matrices. For Kyber768 parameter set, where one matrix
consists of 3 × 3 = 9 polynomials, the GenMatrixA subroutine employs (2×4-
way+1×one-way) SHAKE to generate these 9 polynomials. Our multi-way im-
plementation of Kyber fully exploits the multi-way SHAKE to generate matrices
in the GenMatrixA subroutine of Algorithms 7 and 8. For instance, in the 16-way
implementation of Kyber768, each matrix comprises 3× 3× 16 = 144 polynomi-
als, enabling us to utilize (9×4×4-way) SHAKE to generate all the polynomials,
thereby significantly enhancing the efficiency of SHA3-related operations.

14 Xuan Yu et al.

The SHA3-related operations in the KEM, as exemplified in lines 2, 3, and
5 in Algorithm 5 and lines 5, 8, and 10 in Algorithm 6, are serially used once
in the one-way Kyber primitive, thereby precluding the exploitation of paral-
lel multi-way SHA3. In contrast, the SHA3-related operations in our multi-way
implementation of Kyber ought to be executed N times. Consequently, we can
naturally make use of the power of parallelism by employing (4×4-way) or (4×8-
way) SHA3-related operations in parallel for 16-way and 32-way implementation,
respectively, which improves the efficiency of our implementation. We will later
show that the full utilization of multi-way SHA3 yields significant speed im-
provements, as evidenced in Table 1.

4 Performance Evaluation and Comparison

In this section, we compare the throughput of the multi-way Kyber implemen-
tation with the cumulative throughput of multiple one-way official AVX2 Kyber
implementations provided by the Kyber team [20], which is the state-of-the-art
implementation.

The benchmark experiments are conducted on a desktop machine with Ubun-
tu 22.04 operating system, 11th Gen Intel(R) Core(TM) i7-11700K CPU(Rocket
Lake) running at 3.60 GHz, 8 CPUs, and 16 GiB memory. We use GCC 11.3.0
to compile all programs. We disable the TurboBoost and Hyper-Threading tech-
niques to ensure the reproduction of the experiments. Each experiment is re-
peated 200,000 times and the average results are measured.

As mentioned in Section 3.3, our multi-way implementation of Kyber allows
for more efficient utilization of the multi-way SHA3 implementation compared to
the one-way implementation, which can efficiently accelerate the SHA3-related
computations. The performance comparison of one-way and multi-way SHA3-
related operations is exhibited in Table 1. From Table 1 we can see that the multi-
way SHA3 implementation has a significant throughput advantage compared to
the one-way implementation.

The multi-way implementation of Kyber presented in this paper is built
upon the one-way official AVX2 implementation of Kyber [20]. As shown in
Table 2, our 16-way NTT and INTT implementations outperform the one-way
AVX2 implementation by 24.5% and 19.6%, respectively. Furthermore, our 32-
way NTT, coefficient-wise multiplication, and INTT implementations achieve
remarkable speed-ups of 115.3%, 20.9%, and 92.3%, respectively, compared to
the one-way AVX2 implementation. These performance gains are primarily at-
tributed to the reduction of permutation instructions and modular reductions.
Our 16-way coefficient-wise multiplication exhibits a slightly slower performance
compared to the one-way AVX2 implementation, but its overall impact on the
Kyber.CCAKEM protocol is negligible due to its relatively small time propor-
tion.

A comprehensive comparison of the throughput for Kyber.CCAKEM is also
presented in Table 2. Our 16-way implementation of Kyber achieves 36.0%,
54.6%, and 25.9% performance gains over the one-way AVX2 implementation

Multi-way High-throughput Implementation of Kyber 15

Table 1. The comparison of throughput (k operations/s = 1000 operations/s) for
the one-way and multi-way SHA3-related operations.The multi-way implementation of
SHA3 is directly leveraged from the XKCP library.

Schemes1 One-way [20] 4-way [30] Speed-up 8-way [30] Speed-up

absorbing2 33272.3k 109006.7k 227.6% 177147.9k 432.4%
squeezing 3327.7k3 11327.8k3 241.3% 21308.9k3 540.4%
SHA3-256 2826.3k 9631.1k 240.8% 18875.0k 567.8%
SHA3-512 2824.3k 9630.7k 241.0% 18511.2k 555.4%
1 SHA3-related operations are mainly made up of absorbing and squeezing

operations.
2 The input length of absorbing is 32 bytes.
3 If we set the parameter to let one-way squeezing generate one 168-byte

block, then the 4-way squeezing will generate 4 168-byte blocks and the
8-way squeezing will generate 8 168-byte blocks at a time. The number
of one-way, 4-way, and 8-way here all represent the cost of generating one
168-byte block.

Table 2. The comparison of throughput (k operations/s = 1000 operations/s) for the
core polynomial arithmetic and Kyber.CCAKEM of one-way and multi-way implemen-
tations.

Schemes One-way [20] 16-way Speed-up1 32-way Speed-up

NTT 15055.7k 18737.4k 24.5% 32420.0k 115.3%
Basemul 43735.0k 43195.4k -1.20% 52892.1k 20.9%
INTT 15503.9k 18545.7k 19.6% 29807.6k 92.3%

KEM.KenGen 102.5k 139.5k 36.0% 185.2k 80.6%
KEM.Encaps 77.5k 119.8k 54.6% 178.4k 130.3%
KEM.Decaps 101.3k 127.6k 25.9% 153.3k 51.3%
1 The speed-up in this article is calculated as the ratio of the through-

put achieved by the multi-way implementation to the cumulative
throughput of the one-way implementation.

for KeyGen, Encaps, and Decaps, respectively. Furthermore, our 32-way imple-
mentation of Kyber yields more substantial speed-ups of 80.6%, 130.3%, and
51.3% compared to the one-way AVX2 implementation for KeyGen, Encaps, and
Decaps, respectively. As discussed in Section 3, these remarkable speed-ups are
attributed to various optimization techniques, including NTT/INTT, reducing
coefficient rearrangement, and more efficient utilization of the multi-way SHA3
implementation. Overall, our multi-way Kyber implementation demonstrates
higher throughput compared to the one-way AVX2 implementation, which can
effectively alleviate the computational pressure and reduce server response time.

16 Xuan Yu et al.

5 Discussion

Our multi-way implementation of Kyber is constant-time and does not have any
secret dependent branching or secret dependent memory accesses. Each of the
multiple ways in our implementation of Kyber is identical to the one-way Ky-
ber implementation, which means our implementation inherits the same level
of security as the C implementation of Kyber and its AVX2 one-way imple-
mentation, without introducing any additional attack surfaces. Additionally, the
batched generated key pairs will be stored in the memory, which is protected by
the operating system (OS) security measures.

Then, we discuss the applicability of our multi-way implementation method-
ology to realistic scenarios. Multi-recipient KEM (mKEM) is a variant of KEM
which allows encapsulating a single key for multiple recipients. Based on mKEM,
Alwen et al. [4] proposed the mKyber, a mKEM construction based on Kyber,
and the amKyber, a primitive with IND-CCA security against an attacker that
can adaptively leak mKEM secret keys. The pseudocode diagrams of mKyber
and amKyber involve the execution of certain operations N times, (e.g., CpaEncV
subroutine in mKyber.Encap and amKyber.Encap, which includes NTT, SHA3,
and Compress subroutines), facilitating the utilization of our proposed multi-way
parallel implementation methodology to parallelize these operations. Since our
multi-way implementation methodology is applicable to mKEM, the proposed
multi-way methodology can also be leveraged to benefit various scenarios, in-
cluding secure group messaging (e.g., Messaging Layer Security (MLS) [6]) and
the other related use cases.

In the OpenSSL framework, an OpenSSL ENGINE acts as a container that
facilitates the integration of optimized cryptographic implementations into TLS
applications without the need to modify the source code of OpenSSL or the TLS
application itself. The two works [8,32] demonstrate the feasibility of batched key
generation on NTRU Prime and X25519, respectively, and showcase their inte-
gration into TLS via the ENGINE APIs. Both ENGINEs presented in these two
papers support the integration of batched key generation, enabling the effort-
less integration of our multi-way key generation into OpenSSL through ENGINE
reuse. Consequently, our multi-way implementation methodology can benefit the
Hybrid TLS 1.3 (e.g., Kyber hybridized with X25519 [29]) and is also suitable
for KEMTLS, an alternative TLS handshake protocol.

Integrating multi-way encapsulation and decapsulation into OpenSSL typi-
cally requires the use of an asynchronous programming framework to accumulate
a sufficient number of handshake requests. Fortunately, the QTLS paper [16] has
laid the groundwork for OpenSSL to support asynchronous programming frame-
works, making the integration of multi-way encapsulation and decapsulation into
OpenSSL via such frameworks a promising area for future exploration.

6 Conclusion

This paper explores a multi-way KEM implementation and instantiates a 16-
way implementation on AVX2 and a 32-way implementation on AVX-512 for

Multi-way High-throughput Implementation of Kyber 17

Kyber. Several optimization techniques are proposed for improving the perfor-
mance of the multi-way Kyber implementation. Specifically, we leverage the
parallelism of AVX2 and AVX-512 to implement multi-way NTT-based polyno-
mial multiplication, eliminating the need for permutation instructions for coeffi-
cient rearrangement in the one-way Kyber implementation on AVX2. Addition-
ally, our multi-way implementation methodology overcomes the parallelization
limitations of SHA3 in one-way implementation, which parallelizes all SHA3-
related operations, thereby significantly enhancing the throughput and result-
ing in better performance compared to the one-way Kyber implementation.
Through these optimizations, our 16-way and 32-way implementations achieve
speed-ups of 36.0%/54.6%/25.9% and 80.6%/130.3%/51.3%, respectively, for
KeyGen(), Encaps() and Decaps() compared to the one-way Kyber implemen-
tation with AVX2. Finally, we validate the feasibility of our multi-way imple-
mentation methodology in real-world application scenarios.

Acknowledgements This work was partially supported by the National Nat-
ural Science Foundation of China under Grant 62071222 and the Joint funds of
the National Natural Science Foundation of China under Grant U20A20176.

References

1. Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, A.: Faster Kyber
and Dilithium on the Cortex-M4. In: Ateniese, G., Venturi, D. (eds.) Applied
Cryptography and Network Security - 20th International Conference, ACNS 2022,
Rome, Italy, June 20-23, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13269, pp. 853–871. Springer (2022)

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Miller, C., Moody, D., Peralta, R., et al.: Status report on the third round of
the NIST post-quantum cryptography standardization process. US Department of
Commerce, NIST (2022)

3. Alkim, E., Bilgin, Y.A., Cenk, M., Gérard, F.: Cortex-M4 optimizations for {R,
M} LWE schemes. IACR Transactions on Cryptographic Hardware and Embedded
Systems pp. 336–357 (2020)

4. Alwen, J., Kiltz, E., Massimo, J., Mularczyk, M., Prest, T., Schwabe, P.: How
multi-recipient KEMs can help the deployment of post-quantum cryptography

5. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck,
J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Kyber algorithm specifica-
tions and supporting documentation. NIST PQC Round 2(4), 1–43 (2019)

6. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon, K.:
The messaging layer security (MLS) protocol. RFC 9420, 1–132 (2023). https:
//doi.org/10.17487/RFC9420, https://doi.org/10.17487/RFC9420

7. Becker, H., Kannwischer, M.J.: Hybrid scalar/vector implementations of Keccak
and SPHINCS+ on AArch64. In: Isobe, T., Sarkar, S. (eds.) Progress in Cryptol-
ogy - INDOCRYPT 2022 - 23rd International Conference on Cryptology in India,
Kolkata, India, December 11-14, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13774, pp. 272–293. Springer (2022). https://doi.org/10.1007/97
8-3-031-22912-1_12, https://doi.org/10.1007/978-3-031-22912-1_12

https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.1007/978-3-031-22912-1_12
https://doi.org/10.1007/978-3-031-22912-1_12
https://doi.org/10.1007/978-3-031-22912-1_12
https://doi.org/10.1007/978-3-031-22912-1_12
https://doi.org/10.1007/978-3-031-22912-1_12

18 Xuan Yu et al.

8. Bernstein, D.J., Brumley, B.B., Chen, M., Tuveri, N.: OpenSSLNTRU: Faster post-
quantum TLS key exchange. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12,
2022. pp. 845–862. USENIX Association (2022)

9. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Kyber: A CCA-Secure module-
lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018, London, United Kingdom, April 24-26, 2018. pp. 353–367. IEEE
(2018)

10. Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed imple-
mentation of Kyber on Cortex-M4. In: Progress in Cryptology–AFRICACRYPT
2019: 11th International Conference on Cryptology in Africa, Rabat, Morocco, July
9–11, 2019, Proceedings 11. pp. 209–228. Springer (2019)

11. Cheng, H., Fotiadis, G., Großschädl, J., Ryan, P.Y.A.: Highly vectorized SIKE
for AVX-512. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(2), 41–68
(2022). https://doi.org/10.46586/TCHES.V2022.I2.41-68, https://doi.org/
10.46586/tches.v2022.i2.41-68

12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation 19(90), 297–301 (1965)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 15-19, 1999, Proceedings. Lecture Notes in Computer Science, vol. 1666, pp.
537–554. Springer (1999)

14. Gentleman, W.M., Sande, G.: Fast fourier transforms: for fun and profit. In: Pro-
ceedings of the November 7-10, 1966, fall joint computer conference. pp. 563–578
(1966)

15. Greconici, D.: Kyber on RISC-V. Master’s thesis (2020)
16. Hu, X., Wei, C., Li, J., Will, B., Yu, P., Gong, L., Guan, H.: QTLS: high-

performance TLS asynchronous offload framework with intel® quickassist tech-
nology. In: Hollingsworth, J.K., Keidar, I. (eds.) Proceedings of the 24th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2019, Washington, DC, USA, February 16-20, 2019. pp. 158–172. ACM
(2019). https://doi.org/10.1145/3293883.3295705, https://doi.org/10.114
5/3293883.3295705

17. Huang, J., Adomnicai, A., Zhang, J., Dai, W., Liu, Y., Cheung, R.C.C., Koç, Ç.K.,
Chen, D.: Revisiting Keccak and Dilithium implementations on ARMv7-M. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2024(2), 1–24 (2024). https://doi.org/10
.46586/TCHES.V2024.I2.1-24, https://doi.org/10.46586/tches.v2024.i2.1-
24

18. Huang, J., Zhang, J., Zhao, H., Liu, Z., Cheung, R.C.C., Koç, Ç.K., Chen, D.: Im-
proved Plantard arithmetic for lattice-based cryptography. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022(4), 614–636 (2022)

19. Huang, J., Zhao, H., Zhang, J., Dai, W., Zhou, L., Cheung, R.C.C., Koç, Ç.K.,
Chen, D.: Yet another improvement of Plantard arithmetic for faster Kyber
on low-end 32-bit IoT devices. IEEE Trans. Inf. Forensics Secur. 19, 3800–
3813 (2024). https://doi.org/10.1109/TIFS.2024.3371369, https://doi.org/
10.1109/TIFS.2024.3371369

20. Kyber-team: The Kyber’s optimized implementation using AVX2. https:
//github.com/pq-crystals/kyber/tree/a621b8dde405cc507cbcfc5f794570a4
f98d69cc/avx2 (2023), Accessed: 2023-07-03

https://doi.org/10.46586/TCHES.V2022.I2.41-68
https://doi.org/10.46586/TCHES.V2022.I2.41-68
https://doi.org/10.46586/tches.v2022.i2.41-68
https://doi.org/10.46586/tches.v2022.i2.41-68
https://doi.org/10.1145/3293883.3295705
https://doi.org/10.1145/3293883.3295705
https://doi.org/10.1145/3293883.3295705
https://doi.org/10.1145/3293883.3295705
https://doi.org/10.46586/TCHES.V2024.I2.1-24
https://doi.org/10.46586/TCHES.V2024.I2.1-24
https://doi.org/10.46586/TCHES.V2024.I2.1-24
https://doi.org/10.46586/TCHES.V2024.I2.1-24
https://doi.org/10.46586/tches.v2024.i2.1-24
https://doi.org/10.46586/tches.v2024.i2.1-24
https://doi.org/10.1109/TIFS.2024.3371369
https://doi.org/10.1109/TIFS.2024.3371369
https://doi.org/10.1109/TIFS.2024.3371369
https://doi.org/10.1109/TIFS.2024.3371369
https://github.com/pq-crystals/kyber/tree/a621b8dde405cc507cbcfc5f794570a4f98d69cc/avx2
https://github.com/pq-crystals/kyber/tree/a621b8dde405cc507cbcfc5f794570a4f98d69cc/avx2
https://github.com/pq-crystals/kyber/tree/a621b8dde405cc507cbcfc5f794570a4f98d69cc/avx2

Multi-way High-throughput Implementation of Kyber 19

21. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography 75(3), 565–599 (2015)

22. Mike, W.: High traffic surges got your website down? Here’s why,
https://www.keysight.com/blogs/tech/software-testing/2022/11/15/hi
gh-traffic-surges-got-your-website-down

23. National Institute of Standards and Technology: Module-lattice-based digital sig-
nature standard (2023). https://doi.org/10.6028/NIST.FIPS.204.ipd

24. National Institute of Standards and Technology: Module-lattice-based key-
encapsulation mechanism standard (2023). https://doi.org/10.6028/NIST.FIP
S.203.ipd

25. National Institute of Standards and Technology: Stateless hash-based digital sig-
nature standard (2023). https://doi.org/10.6028/NIST.FIPS.205.ipd

26. Roy, S.S.: Saberx4: High-throughput software implementation of Saber key en-
capsulation mechanism. In: 37th IEEE International Conference on Computer
Design, ICCD 2019, Abu Dhabi, United Arab Emirates, November 17-20, 2019.
pp. 321–324. IEEE (2019). https://doi.org/10.1109/ICCD46524.2019.00050,
https://doi.org/10.1109/ICCD46524.2019.00050

27. Seiler, G.: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryp-
tography. IACR Cryptol. ePrint Arch. p. 39 (2018)

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

29. wolfSSL: Coming soon: Kyber (ML-KEM) hybridized with X25519 in wolf-
SSH, https://www.wolfssl.com/coming-soon-kyber-ml-kem-hybridized-with
-x25519-in-wolfssh/

30. XKCP-team: The eXtended Keccak Code Package. https://github.com/XKCP/XK
CP/tree/86110a0be2c5463c8278807da8395e5fd9912f20 (2023), Accessed: 2024-
05-10

31. Zhang, J., Huang, J., Liu, Z., Roy, S.S.: Time-memory trade-offs for Saber+ on
memory-constrained RISC-V platform. IEEE Trans. Computers 71(11), 2996–3007
(2022)

32. Zhang, J., Huang, J., Zhao, L., Chen, D., Çetin Kaya Koç: ENG25519: Faster TLS
1.3 handshake using optimized X25519 and Ed25519. In: 33st USENIX Security
Symposium, USENIX Security 2024

33. Zheng, J., Zhu, H., Song, Z., Wang, Z., Zhao, Y.: Optimized vectorization im-
plementation of CRYSTALS-Dilithium. CoRR abs/2306.01989 (2023), https:
//doi.org/10.48550/arXiv.2306.01989

Appendix A Format sequence conversion

The following figure illustrates the process of format sequence conversion be-
tween one-way format and 16-way format, using the first 16 coefficients of
each polynomial as an example. In the figure, every letter denotes an indepen-
dent polynomial, with the subscript indicating the coefficient index. The notation
shuffleN depicted in the figure refers to the macro defined in our implementa-
tion, whereas vpshufb and vpermq are two SIMD instructions.

https://www.keysight.com/blogs/tech/software-testing/2022/11/15/high-traffic-surges-got-your-website-down
https://www.keysight.com/blogs/tech/software-testing/2022/11/15/high-traffic-surges-got-your-website-down
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.1109/ICCD46524.2019.00050
https://doi.org/10.1109/ICCD46524.2019.00050
https://doi.org/10.1109/ICCD46524.2019.00050
https://www.wolfssl.com/coming-soon-kyber-ml-kem-hybridized-with-x25519-in-wolfssh/
https://www.wolfssl.com/coming-soon-kyber-ml-kem-hybridized-with-x25519-in-wolfssh/
https://github.com/XKCP/XKCP/tree/86110a0be2c5463c8278807da8395e5fd9912f20
https://github.com/XKCP/XKCP/tree/86110a0be2c5463c8278807da8395e5fd9912f20
https://doi.org/10.48550/arXiv.2306.01989
https://doi.org/10.48550/arXiv.2306.01989

20 Xuan Yu et al.

ymm1

ymm2

shuffle8

ymm1

ymm2

shuffle4

ymm1

ymm2

shuffle2

ymm1

ymm2

vpshufb

ymm1

ymm2

............

ymm7

ymm8

............

ymm7

ymm8

............

ymm7

ymm8

............

ymm7

ymm8

............

vpermq

ymm7

ymm8

shuffle8 with the other 8-way
coefficients

ymm1

ymm2

............

ymm7

ymm8

Fig. 3. The process of format conversion subroutine

	Multi-way High-throughput Implementation of Kyber

